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Modern computational platforms are becoming increasingly complex to

meet the stringent constraints on performance and power. With the larger de-

sign spaces and new design trade-offs brought by the complexity of modern

hardware platforms, the productivity of designing high-performance hardware

is facing significant challenges. The recent advances in machine learning pro-

vide us with powerful tools for modeling and design automation, but current

machine learning models require a large amount of training data. In the digital

design flow, simulation traces are a rich source of information that contains a

lot of details about the design such as state transitions and signal values. The

analysis of traces is usually manual, but it is difficult for humans to effectively

learn from traces that are often millions of cycles long. With state-of-the-art ma-

chine learning techniques, we have a great opportunity to collect information

from the abundant simulation traces that are generated during evaluation and

verification, build accurate estimation models, and assist hardware designers

by automating some of the critical design optimization steps.

In this dissertation, we propose three trace-based learning techniques for

digital design and design automation. These techniques automatically learn

from simulation traces and provide assistance to designers at early stages of the

design flow. We first introduce PRIMAL, a machine-learning-based power esti-

mation technique that enables fast, accurate, and fine-grained power modeling



of IP cores at both register-transfer level and cycle-level. Compared with gate-

level power analysis, PRIMAL achieves an average error within 5% while offer-

ing an average speedup of over 50x. Secondly, we present Circuit Distillation, a

machine-learning-based methodology that automatically derives combinational

logic modules from cycle-level simulation for applications with stringent con-

straints on latency and area. In our case study on network-on-chip packet ar-

bitration, the learned arbitration logic is able to achieve performance close to

an oracle policy under the training traffic, improving the average packet la-

tency by 64x over the baselines while only consuming area comparable to three

eight-bit adders. Finally, we discuss TraceBanking, a graph-based learning al-

gorithm that leverages functional-level simulation traces to search for efficient

memory partitioning solutions for software-programmable FPGAs. TraceBank-

ing is used to partition an image buffer of a face detection accelerator, and the

generated banking solution significantly improves the resource utilization and

frequency of the accelerator.
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CHAPTER 1

INTRODUCTION

With the end of Dennard scaling, the performance improvement of single-

core microprocessors has significantly slowed down in the past decade [51]. In

order to satisfy the stringent performance and power requirements under cur-

rent and future application scenarios, modern computational platforms are in-

creasingly relying on parallel and/or heterogeneous processing to achieve high

performance under a tight power budget. Multi-core CPUs are now prevalent

in embedded systems [13], desktop- and server-grade computers [72, 74], as

well as supercomputers [70]. Hardware acceleration using specialized acceler-

ators is also becoming popular in both cloud and embedded computing plat-

forms. In fact, FPGA and ASIC accelerators are now empowering a number of

major products and services provided by some of the industry giants in their

datacenters [11, 36, 81], while also being integrated into smartphones [55] and

self-driving cars [113].

Unfortunately, high performance and power efficiency often come at the cost

of the scale and complexity of modern hardware platforms. Notably, the lat-

est Apple M1 system-on-chip (SoC) contains sixteen billion transistors, with an

eight-core CPU, an eight-core GPU, and a neural engine for machine learning

(ML) workloads [13]. The NVIDIA GPUs are massively parallel with thousands

of CUDA cores and contain specialized accelerators for ray tracing and tensor

computation [114, 115]. Hardened AI engines are also introduced into mod-

ern FPGAs which have already incorporated dedicated DSP units and memory

modules [165]. Furthermore, the hardware industry is rapidly redesigning and

updating their products to adapt to the emerging applications. The increase

1
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Figure 1.1: Digital design flow with HLS — The design stage is still mostly
manual even with the assistance of HLS. The implementation stage, including
synthesis, placement, and routing, is mostly automated by EDA tools. Hard-
ware designs must be iteratively modified to pass verification and meet QoR
targets.

in complexity and the urge for fast development are posing significant chal-

lenges to both hardware designers and the existing electronic design automa-

tion (EDA) tools.
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1.1 Challenges in Digital Design: Productivity and Quality

Figure 1.1 shows a typical hardware design flow based on high-level synthe-

sis (HLS)1. While the implementation of digital circuits is highly automated

with the assistance of EDA tools, the hardware is usually designed manually

by experienced engineers. At the design stage, developers must first provide

a functional description of the hardware. In cases where the more traditional

register-transfer-level (RTL) design methodology is applied, developers then

further specify the RTL description including the connection of sub-modules,

interfaces, and the logic and state transition of each sub-module. HLS raises the

level of abstraction from RTL to the behavioral level and automates the gener-

ation of hardware microarchitecture. However, the design of hardware archi-

tecture is still not fully automated. Furthermore, modern hardware relies on

carefully-designed heuristics to make decisions at run time, and the design of

these heuristics is mostly manual.

Hardware designers rely on their intuition and experience to search for good

design points in the vast design space. For modern hardware platforms, this

process is becoming more and more challenging because of the even larger de-

sign space and the potentially different design trade-offs brought by new ap-

plications. Under this scenario, experience from past projects may not lead to

successful design decisions, and the heuristics that were effective may no longer

be satisfying for the new hardware. As a result, developers have to spend many

more iterations to reach a good design point, and for every iteration the EDA

tools must be rerun for functional verification and QoR evaluation. In some

cases, it might be out of the designers’ capability to design an effective heuristic

1More traditional hardware design flows start from the RTL design step.
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Logic 
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Figure 1.2: Time consumption of EDA steps and simulation throughput at dif-
ferent abstraction levels — Modeling accuracy increases at lower levels of ab-
straction. The speed of cycle-level simulation supported by SystemC [1] or
GEM5 [99] is between functional-level simulation and RTL simulation.

algorithm or find a satisfying design point in a limited amount of time, and the

final hardware implementation will be sub-optimal. The growing complexity

of hardware systems will make manual hardware design more challenging and

time-consuming.

Even without the increased number of design iterations, optimizing and im-

plementing a hardware design is a time-consuming process. Figure 1.2 shows

a rough breakdown of the time required at each step of the digital design flow.

For large designs, the implementation stage itself may take hours or days, and

the simulation at lower levels of abstraction can be as slow as ten cycles per

second. Despite the low speed/throughput of these steps, they are necessary

for designers to obtain meaningful evaluation results in the current hardware

design flow, because modeling at earlier steps or higher levels of abstraction

is not accurate enough. Combined with the increased number of design itera-

tions, the turn-around time of hardware design will quickly become intolerable

for fast-paced development.
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1.2 Trace-Based Design-Specific Learning for Agile Hardware

Design

There is an emerging trend of applying ML to EDA [69]. Existing works

have explored a variety of topics including high-level modeling [44, 150, 175],

design-space exploration [97, 109, 149, 158], automated architectural and micro-

architectural design [30, 60, 133, 146, 171, 182], verification [68, 78], place-

ment [107, 143, 164, 173], and layout pattern generation [170, 177]. These tech-

niques have been shown to achieve superior performance on a variety of tasks

in the EDA toolchain, and are able to significantly accelerate the hardware de-

sign flow by providing assistance to developers.

While ML techniques are shown to be effective for EDA problems in exist-

ing work, learning a design-agnostic model that performs well for any arbitrary

design is very difficult. A design-agnostic ML model must learn the underlying

characteristics of the target technology library and the optimization algorithms

in the EDA tool flow. Due to the complexity of the digital design flow, many

algorithms used in EDA are highly sophisticated and stochastic. Modern ML

models would require a massive amount of training data from many different

designs to effectively learn the behavior of these algorithms. In addition, hard-

ware designs from different application domains have distinct characteristics.

Without a collection of comprehensive datasets, new designs are likely to be out

of the training distribution, causing the ML models to make inaccurate predic-

tions.

Unfortunately, due to the lack of open-source designs and the long execu-

tion time of EDA tools, collecting and constructing large and useful datasets for

5



Table 1.1: Summary of techniques presented in this dissertation.

Technique PRIMAL Circuit Distillation TraceBanking

Traces Used Gate-level/RTL/Cycle-level Cycle-level Functional-level
Learning Technique ML ML & RL Graph-based data mining

Target Designs Hardened IP cores Partially-reconfigurable modules Specialized accelerators
Design Metric Power Performance & Area Performance

EDA problems remains a daunting task. An alternative is to use ML for design-

specific learning. In this setting, the data collection effort is greatly reduced

since the training data can be easily acquired from the given design. Further-

more, with design-specific learning, ML models only need to learn about the

target design. The behavior of hardware designs is usually deterministic. In

addition, while the ML models still need to learn the behavior of the EDA tools

on the target design, this learning task is much easier than learning complete

EDA algorithms. As a result, design-specific models can usually provide more

detailed and more accurate predictions than their design-agnostic counterparts.

In this dissertation we focus on using design-specific learning to improve the

quality of one single design.

We argue that simulation traces generated by various stages of the hard-

ware design flow are a good source of information for design-specific learn-

ing. Hardware developers often run millions or even billions of cycles of tests

to guarantee the correctness of their designs and discover performance bottle-

necks. Furthermore, depending on the level of abstraction, simulation traces

contain different levels of details about the design: (1) Functional-level simula-

tion verifies the functional correctness of a software-specified design and pro-

vides a sequence of transactions that is useful for understanding the high-level

functional behavior of the design; (2) Cycle-level simulation evaluates the la-

tency and throughput of the design while exposing the value of critical signals

in each cycle for analysis and verification; (3) Simulation at RTL or lower ab-

6
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Figure 1.3: Dissertation outline.

straction levels exposes more internal details of the design, better reflects its

timing behavior, and can be used to calculate the power and thermal charac-

teristics of the underlying circuit. These details are necessary for accurate and

fine-grained analysis of hardware designs. By collecting and analyzing these

details, trace-based learning with ML can effectively assist the hardware design

process.

1.3 Dissertation Overview

In this dissertation we introduce three trace-based, design-specific learning

techniques for agile hardware design and design automation. As shown in

7



Figure 1.3, our research aims to improve both the optimization and modeling

aspects of the hardware design flow. Moreover, our proposed techniques ad-

dress the challenges that arise from optimizing different hardware design met-

rics, including performance, area, and power. Table 1.1 shows the coverage of

this dissertation, which spans multiple levels of hardware design abstraction

and explores a rich set of learning techniques. A more detailed overview of this

dissertation is as follows:

• Because of the broad coverage of this dissertation, Chapter 2 is dedicated

to introducing the necessary background for readers to get a better under-

standing of the techniques discussed in this dissertation. We will intro-

duce the digital design flow and also broadly discuss several widely-used

ML techniques, including linear and tree-based ML models, deep learning

(DL), and reinforcement learning (RL).

• Chapter 3 presents PRIMAL, a ML-based methodology that provides fine-

grained RTL and cycle-level power estimation for IP cores. In this work

we explore the potential of using DL models to characterize large circuit

modules such as RISC-V processor cores and accelerators designed using

HLS. Our experiments show that for RTL power estimation, convolutional

neural networks can effectively model the power of large hardware mod-

ules, even if the test workloads are completely independent from the train-

ing sets. PRIMAL can achieve less than 5% error on cycle-by-cycle RTL

power estimation while providing around 50× speedup compared with

gate-level power analysis. This work was published in DAC’19 [186]. For

cycle-level power estimation, we leverage recurrent neural networks to

tolerate the inaccuracies in cycle-level simulation traces. Thanks to the

faster simulation throughput at cycle level, we were able to achieve an-

8



other 3.5× speedup over our RTL power estimation technique on a collec-

tion of HLS accelerators, with marginal degradation in estimation accu-

racy.

• Chapter 4 proposes a fully automated methodology to directly learn com-

binational logic from simulation traces and presents a case study on a

network-on-chip (NoC) router arbitration task. Specifically, we leverage

deep RL to learn a neural network (NN) agent which implements an op-

timized arbitration policy from simulation. The proposed Circuit Distilla-

tion flow then uses tree-based ML models as a bridge between the learned

NN policy and a compact, combinational logic implementation. Exper-

iments show that the learned arbitration logic is able to achieve a 64×

reduction in average packet latency and a 5% improvement in network

throughput over the baseline FIFO policy under the training traffic. This

work has been accepted to DAC’2021.

• Chapter 5 presents TraceBanking, a data-driven approach to auto-

matically generating on-chip memory banking solutions for software-

programmable FPGAs. Our approach takes a memory trace of the target

application as input and uses a graph-coloring-based algorithm to gener-

ate an efficient memory banking with no conflicts. Compared with exist-

ing compile-time memory partition techniques, our approach can handle

arbitrary memory access patterns that are fixed at run time. This work was

published in FPGA’17 [184].

• Chapter 6 summarizes the contributions of this dissertation and discusses

future research directions.
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CHAPTER 2

PRELIMINARIES ON EDA AND MACHINE LEARNING

In this chapter we provide background knowledge for the techniques pre-

sented in this dissertation. The rest of this chapter will introduce the electronic

design automation (EDA) flow, basic concepts and important techniques of ma-

chine learning (ML), as well as the application of learning-based methods in

EDA and computer architecture.

2.1 Overview of the EDA Flow

Figure 2.1 shows the digital design flow with more details. As mentioned in

Chapter 1, designing a digital circuit is a time-consuming process that involves

many design iterations. The process of finding a satisfactory design point is

usually referred to as design space exploration (DSE). Each promising design

point must be repeatedly verified and evaluated at different levels of abstrac-

tion, and manual optimizations are necessary if the design fails to meet the con-

straints. When evaluating the design, some metrics such as area and frequency

can be directly provided by the EDA tools, while other metrics like latency and

power can only be obtained by running simulation using a comprehensive set

of workloads. The extensive use of simulation further increases the design time

because detailed simulation is very time-consuming, especially at lower levels

of abstraction such as gate-level and circuit-level.

As shown in Figure 2.1, accurate estimations of the quality-of-result (QoR)

metrics can only be obtained at later stages of a typical EDA flow. To facilitate

DSE, ideally designers would like such estimations to be available earlier in

13



.c .h

High-Level Synthesis

.v

RTL Synthesis

Placement and Routing

Functional-Level Simulation

RTL Simulation

Gate-Level Simulation

Circuit-Level Simulation

Designer
Annotations

Hardware architecture 
and microarchitecture

Latency and throughput

Technology Mapping

Logic
Synthesis

Gate-level netlist
Accurate area, timing, power

Wire delay and capacitance
Final area, timing, power

Figure 2.1: Digital design flow with HLS — Accurate estimations of many QoR
metrics are only available at lower levels of abstraction because each step in the
design flow introduces additional details about the design.

the design flow, where the level of abstraction is higher and exploring different

design points is easier. Unfortunately, high-level modeling of digital circuits

is inherently challenging, because each step in the EDA flow introduces many

additional details about the design which are hard to predict at higher levels of

abstraction. Chapter 3 focuses on the power estimation aspect of this problem.

The rest of this section briefly introduces each step in the EDA flow.

High-Level Synthesis The high-level synthesis (HLS) step converts a

behavioral-level description of the design to an register-transfer-level (RTL) de-
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scription. The behavioral-level description can be specified in C/C++ [71, 168],

OpenCL [73, 167], or Python [88, 166]. With HLS, the designer no longer has

to design the interface between hardware modules or the finite-state-machine

(FSM) of each module. Modern HLS tools usually provide a set of predefined

interface protocols. In addition, the scheduling and binding algorithms in the

HLS tools are able to directly generate optimized datapath and FSM from the

behavioral-level description. The designers are given the flexibility to specify

additional optimizations to the generated hardware, such as parallelizing the

computation, customizing the datatype, or partitioning the data memory for

higher memory bandwidth. While the decisions of where and how to add these

optimizations need to be made manually in modern HLS tools, automatically

finding good combinations of the optimizations and effective optimization so-

lutions are active lines of research.

The RTL source code generated by the HLS tools accurately describe the ar-

chitecture and microarchitecture of the hardware. The reports from HLS tools

contain a lot of useful information such as the type and count of operators, the

size of memories, and the latency of fixed-latency hardware modules. For hard-

ware blocks with variable latency, accurate performance measurements can be

obtained from RTL simulation. However, the low-level implementation details

of the design are yet to be determined by the downstream flow. Even with the

information from the generated RTL representation, the HLS tools have limited

knowledge on the selection of operators or the sizing of gates, and can only

provide very crude estimates of wire delay and capacitance. All these missing

details make accurate modeling at RTL and higher abstraction levels extremely

challenging.
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Logic Synthesis Logic synthesis refers to the step which transforms the

RTL description written in hardware description languages (HDLs) into a

technology-specific gate-level netlist. As shown in Figure 2.1, logic synthesis

can be further divided into two steps: RTL synthesis and technology mapping.

RTL synthesis converts the HDL into a technology-independent logic represen-

tation. This process involves several key steps, including RTL elaboration, dat-

apath synthesis, and logic minimization. RTL elaboration converts the HDL

code into an abstract, intermediate format which is suitable for downstream

processing of the synthesis tool. The common operators such as addition and

multiplication are directly converted to logic by datapath synthesis, while the

rest of the design are synthesized to logic and further optimized by the logic

minimization step.

Technology mapping takes the optimized technology-independent logic rep-

resentation as input and maps it to components provided by the technology

library. For ASICs, the technology library contains basic elements of digital

circuits, such as flip-flops and combinational logic gates with different drive

strengths, memory modules, and register files. When mapping to FPGAs, the

mapper is limited to a small set of elements provided by the FPGA architec-

ture, including look-up tables (LUTs), flip-flops, digital-signal-processing (DSP)

units, and block RAMs (BRAMs).

After technology mapping, the gate-level implementation of the design is

precisely defined. The synthesis tool now has complete information about the

size, capacitance and delay of each gate in the design. As a result, the tool will be

able to provide more accurate estimations of area, frequency, and power, which

are often used as indicators of the design quality in practice. However, the gate-

16



level netlist still does not contain any topological information, so the details of

the wires and interconnects are unavailable. The wire delay and capacitance sig-

nificantly affect the frequency and power consumption of the design. Without

these details, the modeling accuracy at gate-level is still limited.

Placement and Routing The placement and routing steps are often referred to

as physical design. For ASIC design, these steps arrange the components of the

gate-level netlist on the chip area and connect them together without violating

the constraints specified by the fabrication technology. As the names suggest,

the placement step places the standard cells and macros onto the chip area, and

the routing step connects the components together using metal wires. For FP-

GAs, the positions of the logic elements are fixed for each device. Therefore,

rather than performing placement and routing on an empty chip area, the placer

for FPGAs allocate the elements in the synthesized netlist onto the predefined

positions, while the routing algorithm for FPGAs configures the programmable

interconnects on the FPGA to connect the logic elements. Since the solution

spaces of the placement and routing problems are large and hard-to-predict,

stochastic algorithms are often used to search for good solutions within a lim-

ited amount of time. In modern EDA toolchains, the placer and router often

work together to generate higher-quality layouts: the placer tries to predict the

final routing quality and generate easy-to-route placements, while the router

may slightly modify the placement to improve the routing quality. Because of

the complexity and randomness of these steps, it is challenging to accurately

estimate all the circuit-level details even from gate-level.
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2.2 Machine Learning Overview

In the past decade, ML techniques have been applied to a wide variety of fields

including autonomous driving [56], gaming AI [134, 135], image classification

and captioning [62, 172], machine translation [142, 151], protein structure pre-

diction [131], and trading [14, 176]. Most of these successes leverage deep learn-

ing (DL), a branch of ML that uses deep neural networks (DNNs) with a large

amount of parameters to approximate arbitrary target functions. Instead of pre-

senting a rigorous, mathematical introduction to ML, the purpose of this section

is to help the readers build an intuitive understanding of the basic concepts and

important techniques in the field of ML. For a more comprehensive introduc-

tion, interested readers can refer to the abundant online resources [4, 5, 6, 117]

or textbooks [54, 111].

At a high level, ML techniques learn from data and try to model the prob-

ability distribution of data. The process of “learning from data” is referred to

as training, and the process of evaluating the learned model using another por-

tion of available data is called testing or evaluation. During training, a training

dataset is provided to the ML model, and the training algorithm tries to opti-

mize a carefully-designed objective function. Since the model only has access to

a sampled subset of the input space, it will never observe the complete data dis-

tribution, and the distribution in the training set often slightly differs from the

actual data distribution because of the randomness of sampling or the bias in the

data collection process. As a result, the ML model will overfit the training set

if it only focuses on perfectly fitting the training distribution but overlooks the

generalization to the whole input space. This often happens when the model

is too complicated for the task. On the contrary, if the model does not have
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enough complexity to fit the training distribution to a satisfying degree, we say

the model is underfitting. To balance the complexity and generalizability of

the model, the objective function during training often has the form shown in

Equation 2.1:

J(w,D) = L(w,D) + λR(w) (2.1)

where w refers to the learnable parameters of the model and D refers to the

training set. The first term on the right hand side, L(w,D), is called the loss

term and represents how well the model performs on the training set. The sec-

ond term, λR(w), is a regularization term to constrain the model’s complexity

and avoid overfitting, where λ and R(w) are often called the regularization fac-

tor and the regularization function, respectively. Notice that the form in Equa-

tion 2.1 is consistent with constrained optimization problems, and the goal of

ML techniques is just to optimize an objective function. As a result, by a broad

definition, traditional optimization techniques such as combinatorial optimiza-

tion methods can also be considered as a form of ML.

Depending on the specific use case, ML techniques can be roughly cate-

gorized as supervised learning, unsupervised learning, and reinforcement

learning. In supervised learning, the ML models learn from labeled training

data. Specifically, each training data sample is associated with a categorical

label for classification tasks, or a numerical label for regression tasks. As a re-

sult, supervised learning techniques actually model the probability distribution

of labels given the input. In contrast, unsupervised learning techniques learn

from unlabeled data and try to directly model the distribution of the input data.

For reinforcement learning, no training dataset is directly provided to the ma-
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chine learning model. Instead, the model (also called an “agent” in the rein-

forcement learning setting) is given an environment that can respond to the

decisions made by the model, as well as a user-defined reward function which

evaluates the model’s performance based on the state transition in the environ-

ment. Under this setup, the goal is to train an agent which can make optimal

decisions according to information provided by the environment. During train-

ing, the agent repeatedly makes decisions, and new training data is generated

on-the-fly every time the agent makes a new decision.

The rest of this section will briefly discuss both supervised learning and re-

inforcement learning techniques that are used in the approaches introduced in

this dissertation. Section 2.2.1 outlines linear models and tree-based models.

Section 2.2.2 introduces the fundamentals of deep learning. We also discuss the

basics of reinforcement learning in Section 2.2.3, with a focus on deep reinforce-

ment learning.

2.2.1 Linear and Tree-Based Models

Linear models and tree-based models are widely-used, traditional ML models.

In contrast to deep learning models that can approximate arbitrary target func-

tions, these two types of models only target a specific type of functions. While

this constraint limits the expressiveness of these models, it also allows them to

be extremely efficient when the function to be approximated falls into the cate-

gory that can be accurately modeled by them. Without special mentioning, the

following discussions on linear and tree-based models assume a single-target

regression scenario.
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Linear Models As one of the simplest ML models, linear models assume the

target function has a linear relationship with the input features. In a single-

target regression setting, a linear model can be represented in the form shown

in Equation 2.2:

f (x) =
M∑

i=1

wixi + b (2.2)

where x is an M-dimensional input feature vector of real numbers {x1, ..., xM},

w = {w1, ...,wN} represents the learnable linear coefficients, and b is a learnable

bias value. Suppose the training set is represented as D = {(x1, y1), ..., (xN , yN)},

for regression tasks common objective functions to optimize during training are

shown in Equation 2.3 [65, 147].

J(w,D) =
1
N

N∑
i=1

( f (xi) − yi)2 Ordinary Least Squares

1
N

N∑
i=1

( f (xi) − yi)2 + λ||w||1 Lasso Regression (2.3)

1
N

N∑
i=1

( f (xi) − yi)2 + λ||w||2 Ridge Regression

If trained with different loss functions, linear models are also very effec-

tive on classification tasks when samples from different classes are linearly-

separable. For binary classification tasks, linear models can be used to predict

class labels by testing f (xi) > 0 or by estimating the probability of the data sam-

ple belonging to class one with a logistic function (p(yi = 1|xi) = 1
1+e− f (xi) ). The

latter approach is often referred to as logistic regression [66]. Linear support

vector machines (SVMs) improve the robustness of linear classifiers by enforc-
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Figure 2.2: Examples of tree-based models for regression tasks.

ing a minimum margin between any training data sample and the learned deci-

sion boundary [41].

Tree-Based Models Tree-based models approximate the target function by re-

peatedly partitioning the input space and learning a separate function in each

partition. As the simplest form of tree-based models, a decision tree recursively

partitions the input space using axis-parallel splits and learns a constant value

in each partition. Figure 2.2a shows a decision tree for regression. The leaf

nodes encode the final predicted values, which are constants for decision trees.

Multiple decision trees can be assembled together using bagging or boosting,

resulting in random forests [63] or boosted trees [31] as shown in Figure 2.2b.

When more complicated models are used at the leaf nodes, such trees are re-

ferred to as model trees. For example, if linear regression models are used at

the leaves, the resulting linear model tree will be able to learn piecewise-linear

functions.

During training, a decision tree or model tree is gradually “grown” by re-

peatedly partitioning the training data. At the root node, all the training data
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is analyzed and a certain gain function is computed to find the best split that

maximizes the gain. For classification problems, the difference of gini impurity

or mutual information are common gain functions, while for regression prob-

lems the mean-squared error between the predictions and ground-truth labels

can be used [23]. After the training data is split into two partitions, the same

process is repeated at the children of the root node, where each child node only

considers one partition of the data. This procedure is applied recursively until

the splitting condition is not met. In this case, the node where the partitioning

process terminates is a leaf node, and a function is used to fit all training data

that arrives at this node.

A decision tree or model tree without any regularization is very prone to

overfitting, because it can keep partitioning the input space until there are only

a few samples at each leaf. Such a tree is unlikely to generalize well to unseen

inputs. Common regularization methods for tree models include constraining

the maximum depth, the minimum samples at each leaf, the minimum number

of samples to make a split, and the minimum gain to make a split. Bagging is

also an effective method to avoid overfitting for tree-based models.

2.2.2 Deep Learning

The fundamental building blocks of deep learning (DL) models are linear “lay-

ers” followed by non-linear activation functions. While a single layer has lim-

ited expressiveness, the flexibility of combining multiple layers in various ways

enables DL models to accurately approximate a wide range of target functions.

The non-linear activation functions are crucial for DL models to represent com-
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Figure 2.3: Examples of the most basic versions of different DL models — MLP:
Only contains FC layers and activation functions. Vanilla RNN: The output ot

at each time step depends on the input at the current time step xt and the hidden
signal from the previous time step ht−1. CNN: Performs repeated convolution
and subsampling to the input image, where subsampling can be performed us-
ing either pooling layers or convolution layers with non-unit stride. One or
more FC layers are used at the end of the network to generate outputs for re-
gression or classification.

plicated nonlinear functions. Depending on the specific use case, common acti-

vation functions include sigmoid, hyperbolic tangent (tanh), and rectified linear

unit (ReLU) [112] and its extensions [38, 61, 102].

Figure 2.3 shows the most basic versions of the DL models used in this
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dissertation: multi-layer perceptrons (MLPs), convolutional neural networks

(CNNs), and recurrent neural networks (RNNs). As the simplest type of DL

model, MLPs only contain fully-connected (FC) linear layers and activation

functions. RNNs are designed for sequence processing where the output at

the current time step may depend on inputs from previous time steps. As

shown in Figure 2.3b, the outputs from the previous time step are used to com-

pute outputs at the current time step. While this recurrent connection enables

RNNs to leverage information from the past, it also limits the parallelizabil-

ity of the RNN models. Popular RNN models such as long short-term mem-

ories (LSTMs) [64] and gated recurrent units (GRUs) [34] have more sophisti-

cated mechanisms to control the importance of historical information. CNNs

specialize for image processing by replacing the fully-connected layers with

convolution layers, which can be considered as large fully-connected layers

with most elements being zeros. The convolution layers exploit local infor-

mation from image patches, while global information is gradually collected

through subsampling using pooling layers or convolution layers with non-unit

stride. Figure 2.3c shows a basic CNN architecture for regression. Modern CNN

models often feature small convolution filters [136], residual connections [62],

and batch-normalization [75]. Computationally efficient CNN architectures use

group convolution [87, 163] or depthwise-separable convolution [35, 67] to re-

place normal convolution layers, and apply channel shuffling [100, 178] to avoid

significant accuracy degradation.

Training State-of-the-art DL models often contain many layers and millions

of parameters in the weight matrices, enabling them to approximate extremely

complicated functions. As a result, a large amount of training data is required
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to properly optimize all parameters in the model without overfitting. For ex-

ample, the smaller datasets for image classification contain tens of thousands of

images [86, 91], the popular ImageNet dataset has several million images [130],

while industrial datasets may contain tens of millions of training samples. It

is impractical to directly optimize all parameters in the models with so many

training samples using traditional solvers.

DL models are usually trained using stochastic gradient descent (SGD),

where the whole training set is divided into small batches containing only tens

to hundreds of training samples. For each batch, the model being trained first

makes its predictions using its current version of parameters, and the loss func-

tion (the L term in Equation 2.1) on this batch is computed. If regularization is

applied and the regularization function can be explicitly expressed as a regu-

larization term (the R term in Equation 2.1), the regularization function is also

computed based on the current version of parameters. The goal of training is

to minimize the objective function (J in Equation 2.1), and the gradient of each

parameter in the model can be computed from the objective function using the

chain rule. For vanilla SGD, the parameters are then updated using the com-

puted gradient values according to Equation 2.4:

wn+1 = wn − α 5w (2.4)

where wn refers to the parameter values at batch n. The hyper-parameter α is

called the learning rate and is set by the user to control the step size of each up-

date. To guarantee convergence, the learning rate is usually set to a small value

and the model must be trained using a large number of batches. More advanced

variants of SGD introduce additional mechanisms and hyper-parameters to es-
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cape bad local minima [123, 141] and automatically adjust the learning rate for

individual parameters [46, 83]. Training with SGD allows DL models to effec-

tively exploit a large amount of training samples and be continuously updated

with new data.

Regularization Due to the large capacity, DL models can easily overfit to train-

ing sets. The most basic regularization method for DL models is weight decay,

which uses the L2 norm of all the weights as the regularization term1. Weight

decay encourages the weights of the model to have small magnitudes so that

a small change in the input would not cause drastic changes in the outputs.

Dropout [137] randomly drops part of the output neurons in a layer with prob-

ability p by setting the output values of these neurons to zeros. Because a dif-

ferent set of neurons are present for each training batch, the neurons learn more

robust representations by themselves instead of trying to correct other neurons’

mistakes. During evaluation, no neuron is dropped and all the weights in the

layer are multiplied by p to maintain the magnitude of the outputs. In prac-

tice, reducing the batch size during training also helps avoid overfitting. With

smaller training batches, the sampling noise in each batch prevents the model

from quickly converging to the optimal solution on the training set and results

in a more generalizable model.

2.2.3 Reinforcement Learning

Different from supervised learning and unsupervised learning where a training

dataset must be provided in advance, reinforcement learning (RL) techniques

1Similar to the regularization term of Ridge regression in Equation 2.3.
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Figure 2.4: Overview of RL model training.

generate data during the training process and use this data to update a model

that is used to make decisions. This model is often referred to as an “agent” in

the RL setting. Figure 2.4 presents a high-level illustration of the RL training

process. The goal of training is for the agent to learn an effective policy π which

can make optimal decisions according to the information from the environment.

The agent is trained by repeatedly making decisions and interacting with the

provided environment. At each time step t, the agent is provided with the state

of the environment, st, and selects an action at according to its current policy

πt. The agent then interacts with the environment by performing action at and

changes the environment’s state from st to st+1. A reward value at the current

time step, rt, is computed based on st, st+1, and at using a human-designed re-

ward function. The internal parameters of the agent can then be updated using

the tuple (st, st+1, at, rt) from the current time step as well as tuples from earlier

time steps. The updated policy, πt+1, will be used in the next time step for select-

ing the most promising action.

Rather than taking a greedy approach and focusing on the immediate re-

ward, the goal of the RL agent is to maximize the long-term cumulative reward.
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A common way of computing the long-term cumulative reward R from the cur-

rent time step T to the future is shown in Equation 2.5, where a user-specified

parameter γ determines whether to focus on near-term reward or long-term re-

ward.

R =
∞∑

t=T

γt−T rt, 0 < γ < 1 (2.5)

Q-Learning One important branch of RL is Q-learning [160], where the agent

directly tries to predict the long-term cumulative reward of each state-action

pair (s, a). The predicted rewards, denoted as Q(s, a), are called Q-values, and

the function that computes the Q-value of a given state-action pair is called the

Q-function. When making a decision at time step t, the learned policy πt simply

chooses the action with the maximum Q-value. During training, the Q-values

are updated following the famous Bellman equation:

Qπt+1(st, at) = rt + γmaxa′(Qπt(st+1, a′)) (2.6)

An intuitive explanation of Equation 2.6 is that the updated Q-value of the cur-

rent state-action pair Qπt+1(st, at) equals to the reward at the current time step

plus the maximum cumulative reward obtainable from the next state times a

discount factor. Proof of convergence is out of the scope of our discussion, but

in practice the Q-values usually converge well because of the exponential decay

of long-term rewards.
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Deep Q-Learning Traditional Q-learning techniques often use table-based ap-

proaches to store the Q-values. Table-based Q-learning is effective when the

state space and action space are both small. When applied to computer archi-

tecture, the Q-value tables can be easily updated in hardware during execu-

tion [76, 110]. However, table-based Q-learning does not scale well to more

complicated problems where the state space and action space are large. With

the advance of DL, Mnih et al. propose deep Q-learning (DQN), which repre-

sents the Q-function using a DNN [108]. While losing the ability to be efficiently

updated in hardware, DQN presents a unified and scalable approach to compli-

cated, large-scale decision-making problems.

During training, the DQN agent is trained with SGD, and the loss function

can be as simple as an L2 loss2. To encourage the agent to explore the environ-

ment, at the beginning of training, the agent has a high probability of choosing

a random action instead of following the prediction of the neural network. This

probability gradually decreases during the training process so that the agent

can learn a stable policy towards the end of training. In addition, since the ear-

lier decisions made by the agent affect the state of the environment, the training

samples would be highly dependent on each other if the neural network is only

trained using the latest state-action pairs. A “replay memory” mechanism is

designed to alleviate the dependency problem and encourage the agent to suf-

ficiently learn from its past experiences. The replay memory caches the state-

action pairs and rewards during training. At each time step, the training data to

the neural network is randomly sampled from the replay memory.

2L = (Qπt (st, at) − rt − γmaxa′ (Qπt (st+1, a′))2
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CHAPTER 3

PRIMAL: POWER INFERENCE USING MACHINE LEARNING

Modern VLSI design requires extensive optimization and exploration in a

large design space to meet the ever stringent requirements with respect to per-

formance, area, and power. Existing electronic design automation (EDA) tools

can provide reasonably accurate area and performance estimates at register-

transfer level (RTL) or even behavioral level with the aid of high-level synthesis

(HLS) tools. However, in order to achieve power closure, designers must obtain

detailed power profiles for a diverse range of workloads from different applica-

tion use cases or even from different levels of design hierarchy. Currently, the

common practice is to feed the gate-level netlist and simulation results to power

analysis tools such as Synopsys PrimeTime PX (PTPX) to generate cycle-level

power traces. Figure 3.1a depicts a typical ASIC power analysis flow, which of-

fers accurate estimates but runs at a very low speed. The throughput of power

analysis is in the order of 10-100s of cycles per second, while the gate-level sim-

ulation step for generating simulation traces runs at less than one thousand cy-

cles per second. Given the high complexity of present-day ASIC designs, it

can take hours or days to perform gate-level power analysis for one intellec-

tual property (IP) core under desired workloads. Furthermore, power-directed

optimization is an iterative process, which means designers have to repeat this

time-consuming power estimation process after every optimization step. As a

result, power analysis has become a critical bottleneck which prevents rapid

design-space exploration.

An alternative is to analyze power above the gate level. There exists a

rich body of research on power analysis at RTL or higher abstraction levels
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Figure 3.1: Conventional ASIC power estimation flow vs. PRIMAL — (a) With
existing EDA tools, designers must rely on the time-consuming gate-level sim-
ulation and power analysis for accurate power profiles. (b) PRIMAL trains
ML-based power models for reusable IPs. Using the trained models, detailed
power traces are obtained by running ML model inference on RTL or timed C
simulation traces.

[9, 12, 21, 29, 92, 126, 132, 140, 169]. These efforts typically make use of measured

constants or simple curve fitting techniques such as linear regression to charac-

terize the power of a given circuit, improving the speed of power analysis at

the expense of estimation accuracy. For accurate power characterization, many

low-level details of the circuit need to be modeled, including standard cell pa-

rameters, sizing of the gates, and clock gating status of the registers. Gate-level

power analysis uses them to estimate the switching capacitance and activity fac-

tor of each circuit node. However, these low-level details are unavailable at (or

above) RTL by design. It is also very difficult for simple analytical models or

linear regression models to capture the complex nonlinear relationship between
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the register toggles and the total switching capacitance.

In this chapter we introduce PRIMAL, a methodology based on machine

learning (ML) for fast and accurate high-level power estimation. PRIMAL lever-

ages gate-level power analysis to train ML models on a set of training work-

loads. These trained models can then be used to infer power profiles of the

same IP core under a different set of user-specified workloads. Figure 3.1b il-

lustrates the inference flow of PRIMAL, which only requires inputs from RTL

simulation or C simulation with timing information to generate accurate power

estimates at a much higher speed (>1k cycles per second). By greatly reducing

the required number of gate-level simulation cycles, PRIMAL allows designers

to perform power-directed design space exploration in a much more productive

manner. The major technical contributions of this work are five-fold:

1. We present PRIMAL, a novel ML-based methodology for rapid power es-

timation with RTL or timed C simulation traces. The trained ML models

can provide accurate, cycle-by-cycle power estimation for user workloads

even when they differ significantly from those used for training.

2. We investigate several established ML models for RTL power estima-

tion, and report trade-offs between accuracy, training effort, and infer-

ence speed. Our study suggests that nonlinear models, especially con-

volutional neural networks (CNNs), can effectively learn power-related

design characteristics for large circuits.

3. We propose to use long short-term memory (LSTM) [64] for HLS power

estimation. Because LSTMs are designed for sequence processing, they

are able to tolerate the inaccuracies in the simulation traces generated by

C-based simulators by leveraging history information before the current

33



cycle.

4. For RTL power estimation, we demonstrate that PRIMAL is at least 50x

faster on average than PTPX for cycle-accurate power estimation with a

small error. Notably, our CNN-based approach is 35× faster than PTPX

with a 5.2% error for estimating the power of a RISC-V core. PRIMAL also

achieves a 15× speedup over a commercial RTL power analysis tool for

average power estimation.

5. For HLS power estimation, our LSTM-based approach offers an additional

3.5× speedup over the CNN-based RTL power estimation approach while

achieving comparable estimation accuracy.

The RTL power estimation part of this chapter was published in

DAC’19 [186]. The remainder of this chapter is organized as follows: Sec-

tion 3.1 presents the overall methodology and intended use cases of PRIMAL.

Section 3.2 introduces our feature construction methods. Experimental results

for RTL and HLS power estimation are reported in Sections 3.3 and 3.4, respec-

tively. Section 3.5 presents related works with additional discussions.

3.1 Methodology

Unlike previous works, PRIMAL uses state-of-the-art ML models for fast and

accurate high-level power estimation. Figure 3.2 shows the two phases of

the PRIMAL workflow1. The characterization phase (Figure 3.2a) requires an

RTL/C model of the module, the gate-level netlist, and a set of training work-

loads. RTL register or C variable traces are used as the input features, while

1We assume C-based HLS design flows for HLS power estimation.
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Figure 3.2: Two phases of the PRIMAL workflow — Power models are trained
once per module. Models can then be used across different workloads, as well
as in different designs that instantiate the module.

ground-truth power numbers for the training workloads are obtained from

gate-level power analysis. The characterization process only needs to be per-

formed once per IP block. The trained power models can then be used to esti-

mate power for different user workloads in the estimation phase as illustrated

in Figure 3.2b.

It is important to note that the training workloads may be very different

from the actual user workloads. For example, designers can use functional

verification tests to train the power models, which then generalize to realistic

workloads. By using state-of-the-art ML models, our approach accommodates

diverse workloads and can model large, complex circuit blocks. The ML models

are trained for cycle-by-cycle power estimation, which provides a more detailed

power profile than average power and enables more effective design optimiza-

tion.
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3.1.1 RTL Power Estimation Methodology

For RTL power estimation, the RTL register traces are used as input features

during the characterization phase. More specifically, we use register switching

activities in the simulation traces as input features. Compared with using all

signals from the RTL simulation trace, only using register switching activities

significantly reduces input feature size, prevents overfitting, and still captures

the complete current state of the circuit. In addition, the mapping between RTL

signals and gate-level registers can be retrieved from the logic synthesis tool

report. Because we use cycle-accurate power traces from gate-level simulation

as ground truth, the ML models are essentially learning the complex relation-

ship between the switching power of all gate-level cells and register switching

activities.

In this work we explore a set of established ML models for RTL power es-

timation. The classical ridge linear regression model is used as a baseline. We

also experiment with gradient tree boosting, a promising non-linear regression

technique [104]. For linear models and gradient tree boosting models, we ap-

ply principal component analysis (PCA) [80] to the input data to reduce model

complexity and avoid overfitting. We also study the efficacy of deep learn-

ing (DL) models, which are capable of approximating more complex nonlinear

functions. Specifically, we experiment with multi-layer perceptron (MLP) and

CNN for RTL power estimation. MLP contains only fully-connected network

layers and is more compute-efficient than CNN. However, the parameter count

of MLP grows quickly with respect to the feature size of the design, resulting

in overfitting and training convergence issues. CNNs have shown impressive

performance in image classification tasks. Thanks to the structure of convolu-
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tional layers, the parameter count of CNNs does not increase significantly as

input image size grows. As a result, CNN is a more scalable choice than MLP

for large designs.

3.1.2 HLS Power Estimation Methodology

For HLS power estimation, since we rely on timed software simulation at cycle

level, the RTL register information is no longer available. As a result, we use C

variable traces as the input features to the ML models. We leverage the FLASH

simulator [33] to generate C/C++ source code annotated with timing informa-

tion. Using the timing information from the HLS synthesis report, FLASH accu-

rately estimates the execution time and simulates FIFO communication cycle-

accurately. Because FLASH abstracts the binding and allocation information

of the computational statements, it is several orders of magnitude faster than

the RTL co-simulation provided by current HLS tools. The software simula-

tion trace is obtained by compiling the annotated source code together with the

testbench and running the generated executable.

FLASH abstracts the binding and allocation information away to achieve

speedup over RTL simulation. However, this abstraction also causes FLASH

to simulate the computational statements in a cycle-approximate manner. In

addition, the C variables do not have a one-to-one correspondence with RTL

or gate-level signals, adding to the difficulty of accurately estimating power

consumption. As a result, the values of the C variables in each cycle is only

an incomplete and shifted approximation of the current state of the circuit, and

may have poor correlation with the power of the circuit.
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int mac(int A[N], int B[N]) {
int result = 0;
for (int i = 0; i < N; i ++ ) {

#pragma HLS pipeline II=1
result += (A[i] * B[i]);

}
return result;

}

(a) C++ HLS code.

Cycle A[i] B[i] result i

0 — — — —
1 3 5 15 1
2 0 3 15 2
3 -1 7 8 3
4 -4 -6 32 4
... ... ... ... ...

(b) FLASH simulation trace.

module mult(clk, ce, a, b, p);
input clk;
input ce;
input[31:0] a;
input[31:0] b;
output[31:0] p;
reg [31:0] a_reg0;
reg [31:0] b_reg0;
reg [31:0] buff0;
wire [31:0] tmp;
assign p = buff0;
assign tmp = a_reg0 * b_reg0;
always @ (posedge clk) begin
if (ce) begin
a_reg0 <= a;
b_reg0 <= b;
buff0 <= tmp;

end
end

endmodule

(c) Verilog code of the multiplier.

Figure 3.3: Pipelined integer MAC unit example — The HLS-generated multi-
plier has a two-cycle latency, so the result column of the FLASH-generated
trace is not perfectly aligned with the output of the multiplier.

We illustrate this phenomenon using a motivational example. Consider the

pipelined integer MAC unit shown in Figure 3.3a. HLS generates an integer

multiplier for this design, which consumes a significant part of the total power.

Figure 3.3c shows the Verilog code of the integer multiplier generated by Vivado

HLS. It is clear that the multiplier has a two-cycle latency, and multiplication is

performed in the middle of the pipeline. Therefore, the power of this multi-

plier not only depends on the inputs in the current cycle, but also depends on

the inputs of the previous cycle. Figure 3.3b shows a FLASH simulation trace

for this example. We can only observe the inputs and outputs of the multiplier

but not the internal register values. Furthermore, notice that in Figure 3.3b the

result variable changes in the same cycle as A[i] and B[i], without the two-

cycle latency. If we only allow an ML model to take the signals from the current

cycle as input, any model that cannot leverage history information is unable to

make accurate power estimations. The orange dashed curve in Figure 3.4 shows
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Figure 3.4: Ground truth and predicted power traces for the MAC unit — The
LSTM prediction follows the trend of the ground truth, while XGBoost predicts
average power.

the prediction of XGBoost [31], a tree-based regression model. Since the signals

from the current cycle have poor correlation with the power consumption, the

XGBoost model struggles to follow the ground truth and only predicts the av-

erage power.

To accurately estimate per-cycle power using C variable traces generated

by FLASH, the ML model must be able to rectify the “mistakes” in the traces

and use the C variable values from the history to estimate power of the current

cycle. We propose to use LSTM [64] to achieve this goal. LSTM is a variant

of RNN which has been successfully applied to linguistic tasks such as speech

recognition, machine translation, and image captioning. The design of LSTM

allows it to effectively capture long-term dependencies and relationships within

a sequence, thus enabling LSTMs to make accurate power predictions from the

C variable traces. As shown in Figure 3.4, the LSTM makes better predictions

for the pipelined MAC unit because it can leverage history information. When

updating its hidden state, the LSTM can compensate for the shifting behavior
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Figure 3.5: Example circuit and waveform for illustrating feature construction
methods — (a) Sequential logic with five registers and three gates; (b) Waveform
of register output values.

in the FLASH traces and infer the internal state of the multiplier.

3.2 Feature Construction

This section describes the feature construction procedure using the circuit in

Figure 3.5a as an example. An example waveform is shown in Figure 3.5b. The

discussion in Sections 3.2.1 and 3.2.2 is under the RTL power estimation context.

Section 3.2.3 describes how we extend the feature construction methods to HLS

power estimation.

3.2.1 Feature Encoding for Cycle-by-Cycle Power Estimation

For cycle-by-cycle power estimation, we use RTL register traces as input fea-

tures without any manual feature selection. Both internal register traces and

I/O signal traces are required to capture all circuit states. A good feature encod-
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Figure 3.6: Default 1D and 2D feature encoding for the circuit and waveform
in Figure 3.5 — (a) 1D switching encoding for three clock cycles; (b) Default 2D
encoding for edge 1.

ing of the simulation traces should capture the switching activities and differen-

tiate between switching and non-switching events. A concise encoding, which

we refer to as switching encoding, is to represent each register switching event as

a 1, and non-switching event as a 0. For an RTL module with n registers, each

cycle in the RTL simulation trace is represented as a 1 × n vector. Figure 3.6a

shows the corresponding encoding for the waveform in Figure 3.5b. Each vec-

tor in Figure 3.6a represents one clock rising edge in the waveform. We use this

1D switching encoding for all but the CNN models. The same feature encoding

is used in [169].

In order to leverage well-studied two-dimensional (2D) CNN models, we

create a three-channel 2D image representation for every clock rising edge in

the register trace. For an RTL module with n registers, we use a d
√

ne × d
√

ne × 3

image to encode one clock rising edge in the RTL simulation trace. We use one-

hot encoding in the channel dimension to represent the switching activities of

each register: non-switching is represented as [1, 0, 0], switching from zero to

41



one is represented as [0, 1, 0], and switching from one to zero is [0, 0, 1]. We refer

to this encoding as default 2D encoding. Figure 3.6b shows how we encode edge

1 of the waveform shown in Figure 3.5b. Since the total number of pixels in

the image can be greater than n, the pixels shown as d’s are paddings which

do not represent any register. In our implementation, the padding pixels have

zero values in all three channels. Every other pixel corresponds to one register

in the module. For this default 2D encoding, the registers are mapped by their

sequence in the training traces. For example, since in Figure 3.5b the order of

registers is A, B, C, D, and E, in each channel the top-left pixel in Figure 3.6b

corresponds to A, the top-right pixel is mapped to C, and the center pixel refers

to E.

3.2.2 Mapping Registers and Signals to Pixels

In the default 2D encoding described above, the mapping between registers and

pixel locations are determined by the way the registers are arranged in the trace

file. This mapping method does not guarantee any meaningful local structure

in the constructed images: Registers that are mapped to adjacent pixels may not

be correlated or physically connected.

CNNs are most effective when there are spatial relationships in their 2D

inputs. As a result, it is natural to exploit graph topology information in the

gate-level netlist so that the register-to-pixel mapping can reflect the connectiv-

ity or even physical placement of the registers. Since the gate-level netlist of

the design is available during the characterization phase, we use the outputs

of logic synthesis tools to map RTL signals to netlist nodes and construct the
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Figure 3.7: Graph-based register-to-pixel mapping methods — (a) The register
connection graph generated from the circuit in Figure 3.5a; (b) Register map-
ping based on graph partitioning. The register connection graph is recursively
partitioned into two parts. Each partition also divides the map into two non-
overlapping parts; (c) Register mapping based on graph node embedding. The
coordinates of each mapped register are generated by node2vec followed by
dimensionality reduction techniques. In the generated mapping each register
occupies a unit square.

graph. Since we only use register traces as our features, we ignore all combina-

tional components in the gate-level netlist and only extract register connection

graphs when processing the gate-level netlist. The CNN models are expected

to “learn” the information of combinational gates between each pair of regis-

ters. The graph constructed for the example circuit in Figure 3.5a is shown in

Figure 3.7a. Each node in the graph corresponds to one register in the design.

We propose two graph-based methods for generating register-to-pixel map-

pings. The first method is based on graph partitioning, in which the graph is

recursively divided into two partitions of similar sizes, and the partitions are

mapped to corresponding regions in the image (see Figure 3.7b). The area al-

located for each partition is computed according to the number of nodes in the

partition. The second method is based on graph node embedding as shown

in Figure 3.7c. We apply node2vec [57], a popular graph node embedding
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technique, to map nodes in the register connection graph into a vector space.

PCA [80] and t-SNE [103] are used to further reduce the dimensionality of the

vector representation to two. The resulting 2D vector representations are scaled

according to the image size, and indicate the mapping locations of the registers.

These two methods introduce local structures into the images according to

the structural similarities between nodes. We still use the channel-wise one-hot

encoding for every register when we apply the graph-based mapping methods.

However, with the two graph-based methods, the area of each pixel can overlap

with the area occupied by multiple registers. In such cases, for every channel,

each register’s contribution to the pixels is proportional to the overlapping area

of the register’s occupied space and the pixel.

3.2.3 Feature Construction for HLS Power Estimation

Feature Encoding The same feature encoding methods described in Sec-

tions 3.2.1 and 3.2.2 can be directly applied to HLS power estimation if we de-

compose each signal recorded in the cycle-level simulation trace into single bits.

In our experiments we use switching encoding for the LSTM models. As a re-

sult, given a simulation trace that is T cycles long and all signals sum up to N

bits, the encoded trace is a (T−1)×N matrix where each row is a 1×N binary vec-

tor. Despite increasing the input dimensionality, this encoding method incurs

minimal information loss compared to more compact encoding methods.

Handling Unobserved Variables in the Simulation Trace Software simula-

tors cannot guarantee to track the value of every variable in every cycle because
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the variables can only be tracked when their corresponding instructions are exe-

cuted. For instance, the variables inside a not-taken branch will not be observed.

In the absence of a loop, when the program has finished certain instructions the

outputs of those instructions will no longer be tracked. In this work, whenever

the value of a variable is unobserved from the trace, we assume it maintains the

previously observed value. We believe this is a reasonable assumption, because the

logic corresponding to the unobserved variables is most likely idle in this case.

3.3 Experimental Results for RTL Power Estimation

The proposed RTL power estimation framework is implemented in Python 3.6,

leveraging networkx [58], metis [82], and a node2vec package [57]. MLP and

CNN models are implemented using Keras [3]. Other ML models are realized

in scikit-learn [121] and XGBoost [31]. We conduct our experiments on a server

with an Intel Xeon E5-2630 v4 CPU and a 128GB RAM. We run neural network

training and inference on a NVIDIA 1080Ti GPU. We use Synopsys Design Com-

piler for RTL and logic synthesis, targeting a 16nm FinFET standard cell library.

The RTL register traces and gate-level power traces are obtained from Synopsys

VCS and PTPX, respectively. Gate-level power analysis is performed on another

server with an Intel Xeon CPU and 64GB RAM using a maximum of 30 threads.

3.3.1 Benchmarks

Table 3.1 lists the benchmarks used to evaluate the efficacy of PRIMAL for RTL

power estimation. Our benchmarks include a number of fixed- and floating-
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Table 3.1: Benchmarks for RTL power estimation — We evaluate PRIMAL with a
diverse set of benchmark designs. For NoC router and RISC-V core, the test sets
are realistic workloads which are potentially different from the corresponding
training set.

Design Description
Register + I/O
signal count Gate count

PTPX throughput
(cycles/s)

Training set
(# cycles)

Test set
(# cycles)

qadd pipe
32-bit fixed-
point adder 160 838 1250

Random stimulus
(480k)

Random stimulus
(120k)

qmult pipe
{1, 2, 3}

32-bit fixed-point
multiplier with 1, 2,
or 3 pipeline stages

{384, 405, 438} {1721, 1718, 1749} {144.9, 135.1, 156.3} Random stimulus
(480k)

Random stimulus
(120k)

float adder
32-bit floating-

point adder 381 1239 714.3
Random stimulus

(480k)
Random stimulus

(120k)

float mult
32-bit floating-

point multiplier 372 2274 454.5
Random stimulus

(480k)
Random stimulus

(120k)

NoCRouter
Network-on-chip router
for a CNN accelerator 5651 15076 44.7

Unit-level
testbenches (910k)

Convolution tests
(244k)

RISC-V Core
RISC-V Rocket

Core (SmallCore) 24531 80206 45
RISC-V ISA tests

(2.2M)
RISC-V benchmarks

(1.7M)

point arithmetic units from OpenCores [118]. We also test our approach against

two complex designs — a NoC router used in a CNN accelerator and a RISC-V

processor core. The NoC router block is written in SystemC and synthesized to

RTL by an HLS tool. The RISC-V core is an RV64IMAC implementation of the

open-source Rocket Chip Generator [15] similar to the SmallCore instance. We

use different portions of random stimulus traces as training and test sets for the

arithmetic units. For the NoC router and the RISC-V core, we select functional

verification testbenches for training and use realistic workloads for testing. For

the NoC router, we test on actual traces of mesh network traffic from a CNN

accelerator SoC. In the RISC-V experiment, dhrystone, median, multiply,

qsort, towers, and vvadd form the set of test workloads.

3.3.2 Results

Figure 3.8 summarizes the results for RTL power estimation. Here we use RTL

register traces as the raw input, and apply the feature construction techniques
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(c) Speedup vs. Synopsys PTPX.

Figure 3.8: Performance of different machine learning models on test sets —
The ML models used by PRIMAL achieve high accuracy for both cycle-by-cycle
and average power estimation, while offering significant speedup against both
Synopsys PTPX and a commercial RTL power analysis tool (Comm). PRIMAL is
also significantly more accurate than Comm in average power estimation.

Table 3.2: Training time of different ML models.
Design PCA Ridge Regression XGBoost MLP CNN

arithmetic units ˜10 min ˜1 min ˜15 min ˜25 min ˜3 h
NoCRouter ˜7 h ˜15 min ˜1 h ˜1.5 h ˜10 h
RISC-V Core ˜20 h ˜30 min ˜1.5 h ˜7 h* ˜20 h*

* A random 50% of training data is used per training epoch.

described in Section 3.2. Two percent of the training data is used as a validation

set for hyper-parameter tuning of the ML models. They are also used for early

stopping when training the deep neural networks. All models except CNNs use

the 1D switching encoding, while CNNs use the 2D image encoding methods in-

troduced in Section 3.2. For ridge regression and gradient tree boosting, we ap-

ply PCA to reduce the size of input features to 256, except for qadd pipe which

has only 160 features with 1D switching encoding. We use three-layer MLP

models for the arithmetic unit and four-layer MLP models for the NoC router
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Figure 3.9: Ground truth vs. CNN-default and PCA+Linear for RISC-V —
Showing 300 cycles from the dhrystone benchmark.

and the RISC-V core. We use an open-source implementation [2] of ShuffleNet

V2 [100] for CNN-based power estimation because of its parameter-efficient ar-

chitecture and fast inference speed. The v0.5 configuration in [100] is used for

the arithmetic units, while the v1.5 configuration is used for the NoC router

and the RISC-V core. CNN-default, CNN-partition, and CNN-embedding

in Figure 3.8 refer to the default 2D encoding, graph-partition-based register

mapping, and node-embedding-based register mapping methods introduced in

Section 3.2, respectively.

Cycle-by-Cycle Power Estimation Results We use normalized root-mean-

squared-error (NRMSE) as our evaluation metric. Suppose the ground-truth

power trace is represented as a n-dimensional vector y, and the estimated power

trace is a vector ŷ of the same shape. Then

NRMS E =
1
y

√∑n
i=1(yi − ŷi)2

n

As shown in Figure 3.8a, all ML models can achieve an average estimation error

of less than 5% across our benchmarks. The training time for each ML model is
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summarized in Table 3.2. For small designs, XGBoost offers competitive accu-

racy with much less training effort. CNN models show significant advantages

over other ML models for larger designs like the RISC-V core. Notably, our

CNN model with default 2D encoding achieves an impressive 5.2% error on the

test set, while MLP, XGBoost and Linear models achieve around 8%, 11% and

13% error, respectively. Figure 3.9 compares the estimation of CNN-default

and PCA+Linear with the ground truth power trace of the RISC-V core. The

CNN estimation fits the ground truth curve more closely. These results demon-

strate the superior capability of deep neural networks in approximating com-

plex nonlinear functions.

We observe that the graph-based register mapping methods do not provide

much benefit over default 2D encoding. In fact, the advanced encodings re-

sult in a lower accuracy on some benchmarks. One possible reason is that with

the graph-based mapping methods, the information of multiple registers can

be aggregated into one single pixel, making the feature representation more

convoluted and hard for the CNN models to decipher. Our experiments show

that CNN models already have enough complexity to learn a favorable internal

representation with the default encoding scheme. However, a graph-based im-

age representation that is relatively stable with respect to small circuit changes

might be useful if we want the trained models to quickly adapt to the changes

with a small amount of training data.

Average Power Estimation Results The average power consumption for a

workload can be easily obtained from a cycle-accurate power trace. We compare

the ML-based techniques with a commercial RTL power analysis tool (Comm).

According to Figure 3.8b, all of the ML techniques achieve less than 1% aver-
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age error across the eight benchmarks, while the commercial tool has an aver-

age error of 20%. The worst case is NoC router, where all models except for

PCA+XGBoost have more than 1.5% error, and CNN with graph-embedding-

based feature encoding has around 4% error. The reason is that different opera-

tional modes of the NoC router have drastically different power characteristics,

causing our training set to have very large power variations. On the other hand,

the test set contains a lot of low-power, idle cycles which are not common in the

training set. As a result, for our test set the average power error is highly de-

pendent on how well the models estimate idle power. The linear model does

not have enough complexity to estimate both active and idle power with high

accuracy, while the DL models are affected by the limited number of idle sam-

ples in the training set. The ML models require a significant amount of time to

be trained for complex designs as shown in Table 3.2. Therefore, the commercial

RTL power analysis tool is still favorable for power estimation of non-reusable

modules.

Speedup Figure 3.8c presents the speedup of Comm and the PRIMAL tech-

niques against Synopsys PTPX. Notice that for PRIMAL, the reported speedup

is for model inference only, which is the typical use case. While Comm is only

around 3× faster than PTPX on average, all ML models achieve much higher es-

timation speed. Even the most compute-intensive CNN models provide around

50× speedup over PTPX. The linear model, XGBoost and MLP has an additional

8×, 5× and 10× speedup over CNNs, respectively. Note that the linear and XG-

Boost models are executed on a multi-core CPU, while MLP and CNN inference

is performed on a single GPU. As a result, if all models can be efficiently mi-

grated to GPUs, or if more advanced CPU and GPU platforms are available,
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Table 3.3: Accuracy and speedup of PRIMAL-RTL , FLASH-CNN, and
PRIMAL-HLS against gate-level power analysis on test sets — We use mmul
and nw from the FLASH paper [33], and 3d rendering, spam filtering,
and digit recognition from the Rosetta benchmark suite [185]. Both the
simulation time and the time used for power estimation are included when
computing the throughput. Simulation and gate-level power analysis are per-
formed with a single thread.

Benchmark
Gate-Level Power

Analysis Throughput
(Cycles/s)

PRIMAL-RTL FLASH-CNN PRIMAL-HLS

Training
Time

NRMSE R2 Speedup
Training

Time
NRMSE R2 Speedup

Training
Time

NRMSE R2 Speedup

mmul 149.4 103 min 1.72% 0.99 54.3× 108 min 3.64% 0.96 81.8× 24 min 3.81% 0.96 126.2×
nw 124.2 45 min 0.47% 0.99 69.2× 65 min 0.42% 0.99 42.6× 20 min 0.41% 0.99 131.3×

3d rendering 35.4 147 min 7.73% 0.88 66.6× 61 min 20.2% 0.18 246.1× 30 min 4.39% 0.96 443.6×
spam filtering 26.6 610 min 2.00% 0.99 65.0× 199 min 29.8% 0.87 360.9× 41 min 2.55% 0.99 527.1×

digit recognition 19.0 304 min 1.16% 0.99 50.4× 110 min 20.8% 0.58 88.1× 36 min 12.3% 0.85 116.4×

Average 50.6 242 min 2.64% — 60.7× 109 min 15.0% — 122.2× 30 min 4.70% — 214.2×

1. CNN models are trained for 20 epochs with the Adam optimizer [83], batch size of 64, learning rate of 1e-3, and
weight decay of 1e-4. 5% of training data is used for validation.
2. LSTMs are trained for 50 epochs with Adam, batch size of 64, learning rate of 1e-3, weight decay of 1e-4, and
20% dropout [137]. 10% of training data is used for validation. An additional 20% dropout is added to the input
layer for digit recognition to avoid overfitting.

more speedup can be expected with a modest hardware cost. For small designs,

the linear model and XGBoost are almost always more favorable choices, since

the neural network models do not provide significant accuracy improvement

but require much more compute and training effort. For complex designs such

as the RISC-V core, CNN provides the best accuracy with around 35× speedup,

while other models are faster but less accurate.

3.4 Experimental Results for HLS Power Estimation

The proposed HLS power estimation approach (referred to as PRIMAL-HLS in

the rest of this section) is evaluated using a set of realistic benchmarks from the

FLASH paper [33] and the Rosetta benchmark suite [185]. For each benchmark,

the training and test set are complete execution runs of the accelerators with dif-

ferent inputs. We implement the LSTM power model in PyTorch [119]. We use
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Vivado HLS 2018.2 for high-level synthesis, targeting a Kintex UltraScale device

(xcku060-ffva1156-2-e) and 250MHz clock frequency. We then synthesize

the generated RTL designs into gate-level netlists with Synopsys Design Com-

piler, targeting a TSMC 28nm standard cell library, an ARM SRAM compiler,

and 250MHz clock frequency. Synopsys VCS and PTPX are used to run gate-

level simulation and generate per-cycle power traces. It is important to note that

we have to use ASIC CAD tools after FPGA HLS to obtain cycle-accurate power

analysis because similar capabilities are currently not offered by the FPGA ven-

dors. We do not intend to use this proof-of-concept tool flow for actual ASIC

implementation.

To evaluate the accuracy degradation against RTL power estimation, we

compare against the CNN-based RTL power estimation approach described in

Section 3.1.1, which is referred to as PRIMAL-RTL in the rest of this section.

To illustrate the effectiveness of LSTM models over other ML models that can-

not leverage history information, we also compare with a baseline approach

referred to as FLASH-CNN. The only difference between FLASH-CNN and

PRIMAL-HLS is that FLASH-CNN uses CNNs and the default 2D encoding

described in Section 3.2.1. The CNN models we use in our experiments are sim-

ilar to ResNet-18 [62]. Simulation and gate-level power analysis are performed

on a machine with a 2.40GHz Intel Xeon CPU and 256GB memory. CNN/LSTM

training and inference are performed on a machine with a 2.20GHz Intel Xeon

CPU, 256GB memory, and one NVIDIA RTX 2080Ti GPU.

Estimation Accuracy Table 3.3 shows the estimation accuracy and throughput

of different approaches. We use two metrics to evaluate the estimation accu-
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Figure 3.10: 3D rendering trace comparison.

racy: NRMSE and R2 score2. NRMSE shows the normalized average difference

between the estimated power trace and the ground-truth power trace, while the

R2 score illustrates the correlation between the estimation and the ground truth.

While all three techniques achieve similar accuracy for mmul and nw,

PRIMAL-HLS is significantly more accurate than the FLASH-CNN baseline

on 3d rendering, spam filtering, and digit recognition. On 3d

rendering and spam filtering, the predictions from PRIMAL-HLS have

similar accuracy as the ones generated by PRIMAL-RTL and are very close to

the ground truth power traces from gate-level power analysis. Figure 3.10 com-

pares the predictions of different approaches against the ground-truth power

trace for 3d rendering. The predictions of PRIMAL-RTL and PRIMAL-HLS

can closely follow the ground truth, while FLASH-CNN often fails to follow the

trend and predicts average power.

As mentioned in Section 3.1.2, PRIMAL-HLS should be more accurate than
2Assume the ground-truth power trace is represented as an n-dimensional vector y and the

estimated power trace is a vector ŷ of the same length, then R2 = 1 −
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−yi)2 .

53



FLASH-CNN because CNNs cannot leverage history information that is im-

portant for HLS power estimation. Interestingly, FLASH-CNN achieves good

accuracy on mmul and nw. By examining these two designs, we found that both

designs have very regular control flow. The power of these designs are sig-

nificantly affected by the state they are in rather than the exact changes of the

signals. In addition, due to the lack of diversity in the control flow, the control

pattern of the test data is very close to the training data. Since the CNN models

could overfit and memorize the control pattern during training, they are able to

offer accurate predictions on the test set as well. On the contrary, the other three

benchmarks have more complicated control flow and deeper pipelines, causing

the schedule assumed by FLASH to significantly differ from the actual schedule.

With the more complex control patterns, FLASH-CNN cannot correctly identify

the state transitions of the designs according to the information from the current

cycle, while PRIMAL-HLS is capable of recovering the behavior of the original

schedule.

Speedup Table 3.3 also shows the throughput of gate-level power analysis

for every benchmark, as well as the speedup of each technique over gate-level

power analysis. On average, PRIMAL-HLS offers 214.2× speedup over gate-

level power analysis, and 3.5× speedup over PRIMAL-RTL. The speedup over

PRIMAL-RTL results from both faster simulation and faster ML inference. Our

results show that FLASH simulation is on average 10.3× faster than RTL simula-

tion. In addition, LSTM inference in PRIMAL-HLS is on average 3.8× faster than

the CNN inference in PRIMAL-RTL. Despite being harder to parallelize, the

LSTM models require much less computation during inference because of the

model architecture and the reduced input size. The training time of PRIMAL-

54



HLS is also much shorter than FLASH-CNN and PRIMAL-RTL.

3.5 Related Work and Discussions

Related Work on Power Estimation Behavioral-level power estimation pro-

vides optimization guidance early in the design flow. In an earlier work, Chen et

al. [29] combine profiling and simple analytical models to estimate FPGA power

consumption. Ahuja et al. [9] propose an HLS-based methodology, which re-

lies on the HLS tool to provide mappings between system-level variables and

RTL signals, and uses RTL power estimation tools to predict average power. Al-

addin [132] characterizes the power of different sub-components through micro-

benchmarking, performs sub-component scheduling to introduce timing infor-

mation into untimed C descriptions, and runs gate-level simulation to estimate

switching activities and average power. In a more recent work [92], Lee et al.

back-annotate micro-architectural information into the LLVM [90] intermediate

representation using information from the HLS tool. By running the annotated

program, timed variable traces can be obtained through software simulation

alone. The variable traces are then used to train a separate ML model for each

control step for predicting cycle-by-cycle power.

While behavioral-level power estimation techniques can provide fast esti-

mations at a high abstraction level, their results can only be used for early

architectural-level explorations due to the lack of low-level details. Most ex-

isting techniques can only provide average power estimation. More implemen-

tation details are available at RTL. Earlier works in RTL power estimation use

simple regression models, such as linear regression and regression trees, to char-
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acterize small circuit design blocks [12, 21, 126]. The regression models are

trained with gate-level power analysis results. Average power, or even cycle-

by-cycle power of the whole design, can be obtained by summing up the out-

puts from multiple models. More recent works in RTL power estimation try to

characterize larger modules or even the complete IP block. PrEsto [140] uses

linear regression models for this purpose, and applies heavy feature engineer-

ing and feature selection to reduce the complexity of power models. A more

recent work by Yang et al. [169] uses a single linear model to characterize the

whole design. A feature selection technique based on singular value decompo-

sition (SVD) is applied to reduce model complexity so that the regression model

can be efficiently mapped onto an FPGA. Both PrEsto and [169] can provide

cycle-by-cycle power estimates.

Power Estimation for SystemC SystemC [1] is a powerful framework based

on C++. It is flexible enough to support hardware design at different abstraction

levels. Designers can either write behavioral descriptions of the hardware mod-

ules and let SystemC-based HLS tools generate the RTL, or specify the cycle-

level behavior of the hardware in detail. Depending on the coding style and the

simulation tool, traces generated from SystemC simulation can be either cycle-

accurate or transaction-accurate. The techniques for HLS power estimation pre-

sented in Section 3.1.2 can be directly applied to SystemC power estimation and

generate cycle-by-cycle power traces, because the LSTM model is able to toler-

ate the shifting behavior in the traces.

We explored an alternative in our DAC’19 submission for handling inaccu-

racies in SystemC traces. The main idea is to train the ML models to estimate the

average power inside fixed-size time windows instead of per-cycle power. We
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Figure 3.11: SystemC power estimation accuracy of NoCRouter using a VGG16
CNN model.

perform an element-wise sum of the encoded features inside the time window

and use the results for ML model training and inference.

We use the same NoC router design shown in Section 3.3 as our case study.

For this design, the SystemC variable trace can differ from the RTL trace by up

to seven cycles. We continue to employ functional verification testbenches as

our training set, and test on 3.5k cycles of chip-level convolution testbenches.

A VGG16 model [136] pre-trained on ImageNet [130] is fine-tuned for window-

by-window estimation. The default 2D encoding is used for this experiment.

The estimation accuracy of the VGG16 model with different window sizes is

shown in Figure 3.11. While the CNN model performs reasonably well for small

window sizes, there is a clear error decrease when the window size is larger

than seven as the effect of trace inaccuracy is mitigated. When the window

size is larger than 8, the CNN model is able to achieve less than 4.5% error,

which is satisfactory in most cases. Nevertheless, the error of SystemC power

estimation remains higher than that of RTL power estimation because of the

trace inaccuracy and the information loss in the feature construction process.
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CHAPTER 4

CIRCUIT DISTILLATION: DISTILLING ARBITRATION LOGIC FROM

TRACES USING MACHINE LEARNING

Resource sharing is common in modern computer systems to balance per-

formance and hardware cost. In order to maximize utilization and achieve

a high performance, the hardware needs to frequently make arbitration deci-

sions to allocate access to shared resources on the fly. The design of an effective

arbitration unit often involves intricate trade-offs amongst performance, area,

and power. Traditionally, such arbitration policies and circuits are almost exclu-

sively designed by humans. However, with the current and future generations

of computer architectures becoming increasingly complex and heterogeneous,

it is now much more difficult for humans to devise efficient heuristics that can

account for information from various parts of the system.

The recent advances in machine learning (ML) provide an opportunity to

overcome this challenge. Using ML techniques, an effective heuristic can be

learned by the model from a sufficient amount of data. Early attempts along

this line investigated perceptron branch predictors [53, 79] and memory con-

trollers using table-based reinforcement learning (RL) algorithms [76, 110].

More recently, there is an emerging trend of applying deep learning (DL) to

tackle the decision making problems in computer architecture, such as cache

replacement [133], prefetching [60, 174], network-on-chip (NoC) packet arbitra-

tion [171], and NoC dynamic frequency-voltage scaling [182]; in many cases,

DL techniques have been shown to achieve a superior performance in simula-

tion. However in most cases, it is not feasible to directly use a DL accelerator

as an arbitration unit due to its high overhead in both latency and area. As a
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Figure 4.1: Proposed flow of distilling logic from traces — Tree models are used
to bridge the implementation gap between neural network models and logic. In
case of a supervised task, tree models can be directly trained from simulation
traces. The discussion of this paper focuses on converting DL models to circuits.

result, feature engineering and manual analysis of neural network models are

necessary to convert DL models to affordable arbitration logic implementations.

While such manual conversion is effective for small neural networks, it quickly

becomes intractable when the model becomes complicated and hard to inter-

pret. A fully automated conversion step is needed to fill the missing link of

applying DL to arbitration problems in computer architecture.

In this chapter, we propose Circuit Distillation, which tackles this challenge

by leveraging tree-based models as a bridge between neural network models

and circuit implementations. Figure 4.1 outlines the proposed approach, where

tree-based models are trained using the outputs of a pre-trained DL model.

Since tree models can be easily converted to circuits, the arbitration logic can be

directly “distilled” from simulation traces. This flow is very suitable for learn-
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ing arbitration logic because arbitration policies can be effectively learned using

deep RL. Under this scenario, labels are not available during the training pro-

cess, and the DL model learns to predict the potential reward (or priority score)

of each legal action. In such cases, converting DL models into tree models im-

proves the interpretability of the learned policy, because designers can examine

the tree models and check whether the policy complies with their experience.

Depending on the exact problem setup, CART trees [23], random forests [63], or

model trees [89] can be used to approximate the output of the DL model.

We believe our approach can potentially be applied to many decision-

making problems in computer systems. In this work, we specifically focus

on on-chip networks and present a detailed case study on the NoC arbitration

problem. NoC arbitration is a well-defined problem, and a good arbitration pol-

icy is critical for fairness, bandwidth utilization, and performance [93, 124]. In

addition, the arbitration logic in a NoC router is subject to stringent area and

latency constraints, so it is necessary to generate efficient and high-performance

arbitration logic. Our major technical contributions are fourfold:

1. We are the first to propose a methodology for automatically generating

compact, application-specific arbitration logic from simulation traces.

2. We present a case study on NoC packet arbitration and comprehensively

analyze the learned arbitration policy. Specifically, we found that linear

model trees are very suitable for this task and can be converted to compact

arbitration logic.

3. The learned arbitration policy achieves up to 64× reduction in average

packet latency and 4.9% increase in network throughput over the FIFO ar-

bitration policy on the training traffic, and is able to generalize to different
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injection rates. Compared with the DL agent, the generated arbitration

logic achieves comparable performance with up to 282× area reduction.

4. We investigate how well the learned arbitration policy generalizes to other

traffic patterns. Our experiments demonstrate the need for automatically

generating reconfigurable arbitration units.

The rest of this chapter is organized as follows: Section 4.1 introduces some

background on the NoC arbitration problem. Details of the Circuit Distilla-

tion approach are introduced in Section 4.2. In Section 4.3, we show our case

study on NoC arbitration and demonstrate the efficacy of Circuit Distillation on

this problem. Section 4.4 discusses related work on the application of ML in

computer systems, learning Boolean logic using ML techniques, and efficient

implementations of DNN models.

4.1 NoC Arbitration Background

In a NoC, routers are interconnected through links. A NoC router consists of

multiple input and output ports. Within each input port, one or more virtual

channels (VCs) are used to store incoming packets. NoC arbitration occurs

when packets from multiple input VCs compete for the same output port. The

arbitration logic determines which VC is given the priority to use the output

port in cases of contention. NoC arbitration policy is critical for the network’s

performance—a good policy provides better fairness and achieves low aver-

age packet latency as well as high network throughput, while a sub-optimal

policy could buffer an old packet in the network for a long time, resulting in

poor network performance. Round-robin arbitration is a commonly used pol-
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icy that guarantees fairness in scheduling by treating each input port and input

VC equally. However, it only considers local fairness for individual routers, and

therefore provides insufficient equality of service (i.e., link bandwidth allocation

becomes more unfair the longer the routes are). Global-age-based arbitration

prioritizes the packet with the oldest age, thereby providing global fairness and

reducing the variance in packet transit time. Although global-age policy is con-

sidered one of the best policies, its hardware cost is largely impractical for use

in on-chip routers [171].

NoC arbitration is a well-defined problem suitable for RL. Yin et al. present

a case study on learning NoC arbitration policy with RL, where the RL agent

predicts a priority score for each packet based on information including the

packet’s local age, payload size, and traversed hop count [171]. Since the input

space of the RL agent is concise, it is easier to analyze and understand why the

agent makes a certain decision. In this paper, we use a similar setup to evaluate

and analyze the arbitration logic generated by our approach.

4.2 Distilling Arbitration Logic from Data

In this section, we introduce the details of our logic distillation process. As

shown in Figure 4.1, starting from running simulation, an RL agent is trained to

perform arbitration. After the agent learns an effective policy, the corresponding

tree model is trained using the agent’s outputs as labels, and the trained tree

model is then converted to combinational logic. The area, power, and timing

of the generated arbitration logic can be evaluated by ASIC tools, while the

performance is evaluated through software or RTL simulation.
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Figure 4.2: Architecture diagram for router arbitration — All routers in the net-
work and all VCs in each router use identical copies of the same RL agent. At
every cycle, the agent takes the packet information and computes a priority
score for each VC. A set of masking and select-max logic chooses the VC with
the highest priority at each output port.

4.2.1 Step 1: Learning an Arbitration Policy

Arbitration policies in computer systems can generally be learned using RL

techniques. In this section we use NoC arbitration as a concrete example to

introduce the key steps of feature construction and training. We believe similar

approaches should apply to other problems in computer systems.

We use deep Q-learning (DQN) [108] to learn an arbitration policy for NoC

routers. Figure 4.2 shows the architecture of routers in our simulation frame-

work, where the same agent is shared by all VCs and all routers. Upon arbi-
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tration, each candidate VC queries the agent and the agent returns a priority

score. Similar to [171], the agent uses four features of the packet to make pre-

dictions: 1) local age, i.e., the amount of time the packet has spent at the local

router where arbitration takes place; 2) payload size, i.e., size of the packet in

bytes; 3) hop count, i.e., number of hops the packet has traversed so far; and

4) distance, i.e., number of hops between the current and destination nodes.

These features are integers of fixed bit widths, and are normalized to the range

of zero to one when training the neural network agent. At every output port,

the priority scores of the VCs that are not requesting this port will be masked

with zeros, and the output port is granted to the VC with the highest priority

score 1. The agent is given a reward of one if it correctly selects the globally

oldest packet that is requesting a specific output port, otherwise a reward of

zero is given. While our design of the reward function optimizes for network

latency, designers can emphasize other quality-of-service (QoS) metrics by tun-

ing the reward function. For example, assigning rewards based on router buffer

occupancy emphasizes resource utilization. Through RL, the agent will learn

different policies depending on the reward functions, which will result in dif-

ferent circuit implementations. The collected simulation trace contains tuples of

〈current state, action, next state, reward〉, and is added to a large replay memory.

The weights of the agent are periodically updated by training on randomly sam-

pled data from the replay memory. Please refer to Section 4.3 for more details

on the hyperparameters and training dynamics.

1For multi-priority traffic, the arbiter selects the “best” packet within each priority level.
With additional logic to enforce proper priority ranking, our methodology can accommodate
this scenario without any major changes.
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4.2.2 Step 2: Selecting the Tree Model

Among the various tree-based models, decision trees and linear model trees are

of particular interest in our approach because they can be easily converted to

logic. However, these two types of models intrinsically learn different types of

functions: decision trees learn step functions, while linear model trees learn

piecewise linear functions. Therefore, linear model trees are naturally more

suitable if the target function is linear or piecewise linear, while decision trees

are more suitable for very nonlinear target functions. Modern neural networks

with ReLU activation functions approximate any arbitrary target function using

piecewise linear functions, so linear model trees might be a better fit if we want

to approximate the outputs of these neural networks.

Because linear model trees learn a linear function at each leaf node, they can

represent more complicated functions than decision trees at equal depth. As

a result, when implementing the same piecewise linear function, linear model

trees will be shallower and can be implemented in hardware with potentially

smaller area budget (more details in Section 4.3.1).

4.2.3 Step 3: Generating Implementable Logic

The logic generation process starts by training a tree model that approximates

the output of the neural network agent. Decision trees and linear model trees

must be trained in a supervised manner. As a result, a set of inputs must be

collected, and the predicted scores from the neural network agent are used as

labels to train the tree models. If the number of input features is small, the in-

puts can be collected by exhaustively including all possible input combinations.
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Figure 4.3: Convert tree models to combinational logic — For linear model trees,
log quantization is applied to convert multiplications to shift operations.

Otherwise, inputs can also be collected from simulation, where the collected

data would cover the common cases but probably not every corner case. For

NoC arbitration we choose the first approach, because the inputs are all within

limited ranges, resulting in around 4,000 possible combinations.

To minimize the hardware overhead, the tree model should take unnormal-

ized integer features, and output integer priority scores. In our experiments, we

rescale the predicted priority scores from the neural network agent to the range

of [0, 64), and use the rescaled scores as labels when training the tree models.

The outputs of the tree models are quantized to six-bit integers using linear

quantization.

Figure 4.3 shows how the trained tree models are converted to combina-

tional arbitration logic. Each non-leaf node is implemented using a two-input

multiplexer and a comparator. For decision trees, the leaf nodes are constant

values. For linear model trees, the linear models at the leaves require multipli-

cation and addition2. To further simplify the logic, we perform log quantization

2The predicted values of linear model trees might be negative. In this case, we can either use
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Figure 4.4: Training dynamics of the MLP agent and comparisons with different
policies — FIFO: local-age-based, RR: round-robin, GA: global-age-based, MLP:
MLP agent.

to the weights of the linear models and quantize them to powers of two. With

this simplification, multiplications can be completely replaced by shift opera-

tions. Log quantization also gives the logic synthesis tool more opportunity to

optimize the addition logic, because in case of right shifts the valid bit width of

the operands will be reduced.

4.3 Case Study: NoC Arbitration Policy

In this section we present a detailed case study on NoC arbitration policy.

We use the Garnet [8] network model in GEM5 [99] as our simulation plat-

form3. The training of RL agents, tree models, and the conversion to logic

signed comparison at the select-max unit, or add a constant to all leaves such that the prediction
is always non-negative.

3We modified the Garnet model in GEM5 to collect data and train the RL agent.
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are implemented in Python leveraging PyTorch [119], sci-kit learn [120], and

an open-source implementation of model trees [161]. To evaluate the area and

latency, we synthesize the generated arbitration logic modules using Synopsys

Design Compiler, targeting a TSMC 28nm technology library and 1GHz clock

frequency. All experiments are performed on a server with a 64-core 2.80GHz

Intel Xeon CPU and 384GB memory.

Without loss of generality, we constrain the routers in the network to have

one virtual channel per virtual network to speed up training and facilitate our

analysis. As mentioned in Section 4.2.1, the RL agent is given a scalar reward

of one if it selects the globally oldest packet. This is equivalent to guiding the

agent with a global-age-based oracle policy, which is unrealistic to implement

in hardware. The RL agent is trained on a 4×4 mesh network with an injection

rate of 0.32 packets/node/cycle under uniform random traffic. We choose this

particular injection rate because it is the network saturation point (the point at

which packet latency starts to increase dramatically) for the global-age-based

policy. As shown in Figure 4.2, all VCs of all routers in the network share the

same neural network agent, which is a multi-layer perceptron (MLP) with one

hidden layer and sixteen neurons in this hidden layer.

During training, we launch GEM5 ten times, where at each launch we warm

up the NoC for two million cycles and train for one million cycles. The agent is

trained and updated every 5,000 cycles. In the rest of this section we will refer

to 5,000 cycles as one episode. An exponential decay of the agent’s exploration

rate is used to encourage the agent to explore different actions at the begin-

ning of the training, and exploit the learned policy towards the end4. Figure 4.4

4We use a replay memory with 80,000 entries, and every episode the agent is trained with
200 random batches of 32 entries sampled from the replay memory. The agent is trained using
the Adam optimizer [83] with an initial learning rate of 0.001. Exploration rate ε = 0.9e−τ/500,
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Table 4.1: Performance and area comparison of different arbitration policies
— Performance is measured under Uniform Random traffic with an injection
rate of 0.32. Only the area of the per-VC arbitration logic is measured, i.e. the
“agent” logic in Figure 4.2. DT: decision tree; LMT: linear model tree.

Model Avg. Packet Latency (ps) Arb. Logic Area (µm2)

MLP 25659 ± 346 11446

DT (no regularization) 27015 ± 1174 725.8
DT (max depth = 12) 27241 ± 263 684.1
DT (max depth = 8) 25655 ± 597 247.7
DT (max depth = 4) 77833 ± 23931 28.2

LMT (max depth = 4) 23146 ± 222 214.0
LMT (max depth = 3) 24029 ± 171 112.9
LMT (max depth = 2) 24537 ± 494 73.7
LMT (max depth = 1) 23354 ± 373 45.9
LMT (max depth = 0) 24256 ± 518 19.7

FIFO 2113339 ± 50046 0.0
Manually Constructed [171] 2056407 ± 54344 8.6

Oracle (global-age) 21492 ± 272 N/A

1. Each agent logic is evaluated for five times. All circuits meet the 1ns timing constraint. The area of one
instance of the agent logic is shown.
2. With no regularization, DT is equivalent to a hard-coded, quantized version of the MLP agent. LMT with a
depth of zero is equivalent to a linear model.
3. The “agent” logic is just a set of wires for FIFO. The global-age-based policy is not realistic to be imple-
mented in hardware.

shows the performance of the agent during training, as well as the comparison

with FIFO (prioritizes packets based on their arrival time to the local router),

round-robin (RR), and the oracle global-age-based (GA) policy. With this spe-

cific traffic, the agent steadily converges to the oracle policy and achieves two

orders of magnitude lower average packet latency than RR and FIFO policies.
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4.3.1 Area and Performance of the Distilled Arbitration Logic

Table 4.1 shows the performance and area comparison of different arbitration

policies. We also include the manually constructed arbitration logic from [171]5.

While being very area-efficient, the manually constructed logic results in poor

performance in our setup. Since the training traffic is at the saturation point of

the global-age-based oracle policy, this manual policy would quickly degenerate

to the FIFO policy with a large number of buffered packets. A straightforward

way to implement an MLP as combinational logic is to use an array of multipli-

ers and adders. The “MLP” row of Table 4.1 shows the area of this implemen-

tation, where the inputs to the multipliers and adders are quantized to eight

bits. Compared with this implementation, decision trees can achieve up to 53×

area reduction with slight performance degradation, while linear model trees

achieve up to 282× area reduction with marginal performance improvement.

When no regularization is applied to the decision tree, the generated logic can

be considered as a hard-coded, quantized version of the neural network agent.

Compared with this version, the circuits generated from regularized decision

trees and linear model trees can achieve up to 15× area reduction without signif-

icant performance degradation. The circuit distilled from the linear model tree

with a max depth of one achieves competitive performance with only 45.9µm2

area. As a reference, an eight-bit adder consumes around 17µm2 area under the

same technology node and target frequency. While heavily regularized decision

tree models can be converted to more area-efficient logic, the performance loss

is non-negligible.

The linear model trees generally achieve better average packet latency than

where τ is the number of trained episodes.
5Priority = (local age << 1) + (hop count >> 1)
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Algorithm 1 LMT Arbitration Policy
Input : local age, payload size, hop count, distance
Output : Priority
if hop count ≤ 5 then

Priority = (local age >> 3) + (payload size >> 3) + (hop count << 1) + (distance >> 1) + 9
else

Priority = (local age >> 2) + (payload size >> 1) + (hop count << 2) + distance - 20

Figure 4.5: Arbitration policy learned by linear model tree with a max depth of
one, with all weights quantized to powers of two and biases adjusted.

their decision tree counterparts, which indicates that a piecewise linear prior-

ity function is more suitable for the NoC arbitration problem. Interestingly, the

model trees can achieve lower latency than the original neural network agent.

Our conjecture is that the neural network agent might have overfit during train-

ing, while the conversion to linear model trees applied a proper regularization

effect.

4.3.2 Analysis of the Distilled Arbitration Logic

Figure 4.5 shows the arbitration logic learned by the linear model tree of depth

one. The policy uses hop count as a critical feature so that packets are treated

differently based on their travel distance. The learned policy generally favors

larger packets that have been buffered locally for a longer time while also con-

sidering the topology information, which is consistent with human intuition.

Compared with the manual policy from [171], our learned policy emphasizes

less on local age and places higher weights on packet size and topology infor-

mation. This prevents our policy from quickly degenerating to a FIFO policy

under heavy traffic.
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Figure 4.6: Performance of different policies under Uniform Random traffic —
LMT (depth=1): distilled arbitration logic from linear model tree with depth
one.

4.3.3 Generalization to Different Injection Rates

Figure 4.6 shows the performance comparison between the baselines, the oracle

policy, the MLP agent, and distilled arbitration logic across different injection

rates under uniform random traffic. The figure only shows the region around

the network saturation point, as arbitration policy has little impact on NoC per-

formance under low injection rates. While not shown in the figure, the manual

policy from [171] performs marginally better than FIFO.

When the network is close to saturation, the MLP agent consistently outper-

forms FIFO and RR while being close to the oracle GA policy. The performance

of the distilled arbitration logic is slightly better than the MLP agent, which is

consistent with our findings in Section 4.3.1. Under the same traffic pattern, our

agent and the distilled arbitration logic are able to generalize in situations of

both light and heavy traffic and consistently outperform the baselines. Com-

72



(a) Transpose traffic.

(b) Bit-complement traffic.

Figure 4.7: Performance of different policies under traffic patterns that are un-
seen during training — MLP and LMT agents are trained under uniform ran-
dom traffic.

pared to FIFO, the distilled policy improves the NoC throughput by 4.9%.
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4.3.4 Generalization to Different Traffic Patterns

Figure 4.7 shows the performance comparison between different arbitration

policies under the Transpose and Bit-complement traffic patterns6. Again, the

manual policy from [171] (not shown in Figure 4.7) achieves similar perfor-

mance with FIFO. The policies learned from uniform random traffic perform

very differently on these two traffic patterns: the MLP and tree-based policies

generalize quite well to the Transpose traffic, but perform worse than the FIFO

policy on the Bit-complement traffic. Using shallower trees hurts performance

under both traffic patterns. The reason is that the distilled arbitration logic is

only an approximation of the MLP agent. While this inaccuracy results in a

slight performance improvement under uniform random traffic, these two traf-

fic patterns have longer average hop counts and require more sophisticated pri-

ority functions.

Under the Bit-complement traffic, again we observe the interesting behav-

ior that the distilled LMT policy performs better than the original MLP agent.

Apparently, the MLP agent overfit to uniform random traffic during training

and cannot generalize well to the Bit-complement traffic. The conversion to lin-

ear model trees happens to apply a proper regularization effect to the agent.

However, it is not guaranteed that such conversion will improve performance

in all cases. It is important to note that the arbitration policies learned using

our approach are still traffic-specific and cannot guarantee to generalize well to

arbitrary traffic patterns.

6For the Transpose traffic pattern, node (x, y) only communicates with node (y, x), while for
the Bit-complement pattern node (x, y) only communicates with node (x̄, ȳ) where x̄ and ȳ are
the bitwise inverse of x and y, respectively.
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4.4 Related Work and Discussions

Related Work on Applying ML to Computer Systems Many critical prob-

lems in computer architecture can be effectively solved using ML. One of the

most well-known applications of ML in computer architecture is probably the

perceptron branch predictor, where a set of perceptrons are continuously up-

dated during CPU execution to make accurate predictions [79]. Similar ideas

are later applied to cache replacement [146] and prefetching [19]. Another line

of research focuses on using RL to solve typical arbitration problems, including

memory request scheduling [76], NoC routing policy [47], and cache prefetch-

ing [122]. These works implement their RL agents using Q-tables stored in

memories, and the content of the memories are updated at run time to adapt

to different workloads. The sizes of the Q-tables are subject to area and power

constraints, which limits the complexity of the policies these approaches can

learn.

With the development of DL, recent works explore the opportunity of ap-

plying DL techniques to computer architecture. Hashemi et al. performed a

pure theoretical study of applying long-short term memory (LSTM) to cache

prefetching [60]. Zeng et al. explored a similar idea, but embedded a small

LSTM accelerator into the prefetcher to perform online training and infer-

ence [174]. Shi et al. proposed an LSTM-inspired cache replacement policy im-

plemented as a support vector machine, where the hardware implementation

and feature representation are designed after carefully examining the attention

coefficients of the LSTM [133]. Zheng et al. proposed to use deep Q-Networks

(DQN) for dynamic frequency-voltage scaling (DVFS) in a NoC [182]. The la-

tency of the neural network accelerator is tolerable because the DVFS decisions
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are made infrequently. Yin et al. presented a detailed case study on using DQN

to learn a NoC arbitration policy [171]. By analyzing the weights of the trained

neural network and incorporating domain knowledge, the authors were able to

implement effective arbitration policies with small hardware overheads.

While our approach distills circuits from data and deep learning models, an-

other relevant line of research focuses on efficient hardware implementation of

deep neural networks. LUTNet [154] provides an efficient way of implement-

ing binarized neural networks [42] on FPGAs by heavy pruning, fine-tuning,

and directly mapping the XNOR gates in the network to look-up tables (LUTs).

LogicNets go one step further by implementing the accumulation and activa-

tion functions also as LUTs [148]. These techniques are designed for mapping

low-precision networks onto FPGAs, while our approach maps full-precision

networks to ASICs.

Learning Combinational Logic from Labeled Training Data The discussions

in this chapter have been focusing on learning an arbitration policy using RL

and converting the DL model into combinational logic. If labeled data can be

directly collected from simulation traces, a combinational logic implementation

can be derived by directly training a tree-based model on the labeled dataset and

converting the model to logic. In cases where the target function is complicated

and cannot be directly learned by tree-based models, an alternative is to first

train a DL model on the dataset and distill its knowledge to tree-based models

as described in Section 4.2.3. In general, Circuit Distillation provides a realistic

way of implementing the functionality of a DL model using combinational logic.

While the conversion from the DL model to combinational logic is lossy, the

trade-off between conversion accuracy and hardware cost can be controlled by
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adjusting the tree depth and quantization mechanism.

As a special case of learning logic from labeled data, the problem of learning

Boolean functions has been investigated for decades. Learning Boolean func-

tions using decision trees can be dated back to the 1990s [116]. ESPRESSO [129]

and Boolean optimization techniques based on binary decision diagrams [24]

can also be viewed as learning Boolean functions from partial truth tables.

Cartesian genetic programming (CGP) [106] searches for optimal logic imple-

mentations using an evolutionary algorithm. A more recent work by Chatter-

jee [26] approaches Boolean function learning as a ML classification problem

and learns Boolean functions using DL models and LUT networks.

In summer 2020, a programming contest on learning Boolean functions was

organized at the 2020 International Workshop in Logic Synthesis. One hun-

dred benchmarks from arithmetic, random logic, and machine learning do-

mains were provided to the contest participants, where only 6400 randomly-

selected lines of the truth table were given for each benchmark. The gener-

ated logic for each benchmark must be represented as an And-Inverter graph

(AIG) [20] and use no more than five thousand AND gates. I cooperated with

several colleagues in our group and won third place in the contest 7. Our tech-

nique features an ensemble of multiple ML models including decision trees, ran-

dom forests, and MLPs. Tree-based models achieve competitive performance

on benchmarks with a small number of input bits, while MLPs excel on bench-

marks with more inputs, including the machine learning tasks derived from

the MNIST [91] and CIFAR-10 [86] image classification datasets. Other par-

ticipants leverage different ML models, CGP, and LUT networks to learn the

provided benchmarks. More details can be found from the IWLS 2020 technical

7In collaboration with Jordan Dotzel, Yichi Zhang, and Hanyu Wang.
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report [125].

Distilling Tree Models from Deep Neural Networks The ML community ap-

proaches the problem of training tree-based models from DL models from an

interpretability perspective. Earlier attempts try to improve the robustness of

the tree-based models by efficiently sampling the input space. The TREPAN al-

gorithm queries the MLP oracle model at the split boundaries of the student

decision tree model to generate more faithful splits [43]. The DecText algo-

rithm exploits a similar idea and introduces specialized splitting and pruning

techniques to maximize the fidelity of the decision tree to the DL model [22].

Krishnan et al. uses genetic algorithms and probabilistic methods to sample

promising input samples for a black-box DL model when the original training

data is unavailable [85]. More recently, Liu et al. propose to use the output

logits of the DL model instead of the predicted labels to distill knowledge to a

decision tree [98]. Similar approaches have seen applications in the health care

domain [27, 28]. Frosst and Hinton propose to distill soft decision trees from

DL models [52]. While this approach is systematic and yields high accuracy,

soft decision trees are not directly applicable to latency-constrained problems

in computer architecture because they make decisions using path probabilities

instead of the labels at the leaf nodes. Currently, an active line of research tries

to combine the strengths of DL models and tree-based models using a hybrid

approach [144, 153]. These hybrid models usually have components from DL

models, thus are still prohibitive to be computed using logic.
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CHAPTER 5

TRACE-BASED ON-CHIP MEMORY BANKING FOR

SOFTWARE-PROGRAMMABLE FPGAS

With the general-purpose CPU performance scaling significantly slowing

down in the past decade, FPGAs have become an attractive option for ful-

filling the role of application-specific hardware acceleration. An FPGA-based

hardware accelerator is typically highly parallelized and/or deeply pipelined

in order to achieve a desirable throughput. As a result, multiple parallel ac-

cesses to a single on-chip memory are often required to provide the necessary

data bandwidth to sustain the high throughput of the accelerator. However, the

embedded memory blocks available on modern FPGA devices (e.g., BRAMs)

only provide a very limited number of ports for concurrent reads/writes1. Sim-

ply replicating the memory blocks would not be feasible due to the steep area

overhead and potential memory coherence overhead resulting from write oper-

ations.

A more viable solution is memory banking, which partitions a memory block

into several smaller banks; thus, concurrent memory accesses are distributed to

different banks, avoiding or minimizing banking conflicts. Since each mem-

ory bank only holds a subset of the original memory contents, memory bank-

ing usually yields a significantly lower storage overhead compared to memory

duplication. Nevertheless, additional banking logic is required to orchestrate

the data movement between banked memories and compute units in the ac-

celerator. For non-expert FPGA designers, devising a minimum-conflict bank-

ing scheme with low hardware overhead is certainly a challenging task. While

1Even for ASICs, it is not feasible to have a large number of memory ports due to the exces-
sive area and power overhead [145].
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commercial HLS tools provide some basic support for array partitioning [40],

the users remain responsible for manually specifying the banking scheme via

vendor-specific pragmas or directives. For this reason, there is an active body of

HLS research tackling the problem of automatic array partitioning (i.e., mem-

ory banking) given a throughput constraint that is usually specified in terms of

pipeline initiation interval (II) [37, 105, 139, 156, 157].

In this chapter, we present a trace-based banking algorithm, denoted as

TraceBanking, which is very different from the existing methods2. Specifically,

our approach mines a stream of memory address bits to determine a banking

scheme that minimizes the number of access conflicts and simplifies the bank-

ing logic. Unlike mainstream techniques that are mostly based on static com-

piler analysis, TraceBanking only relies on simple source-level instrumentation

to provide the memory trace of interest without enforcing any coding restric-

tions (such as static control parts often required by polyhedral analysis [17]).

Our work has been published in FPGA’17 [184]. The major technical contribu-

tions of our work are threefold:

• We offer a fresh look at memory banking, by waiving the requirements of

using static compile-time analysis. We show that from a trace of memory

addresses, we can identify a set of “interesting” address bits that form

the basis of the hardware-efficient memory banking function. In addition,

our technique is able to form banking functions that do not belong to the

solution space of the existing linear-transformation-based techniques.

• We propose a two-step heuristic to solve the trace-based memory banking

problem. This heuristic is not only able to exploit regular memory access

patterns, but can also generate efficient solutions for applications with ir-
2This work is in cooperation with Khalid Al-Hawaj from Prof. Christopher Batten’s group.
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regular memory accesses.

• We propose an SMT-based checker that can formally verify if a memory

banking solution is free of access conflicts under all possible execution

traces. This allows the usage of a reduced (or incomplete) memory trace

to significantly speed up TraceBanking, but without the risk of accepting

an inferior banking solution.

The rest of this chapter is organized as follows: Section 5.1 uses an moti-

vational example to explain the memory banking problem and illustrate the

intuition behind our work; Section 5.2 describes the TraceBanking algorithm

in detail; Section 5.3 introduces the SMT-based banking solution checker; Sec-

tion 5.4 reports the experimental results on commonly used benchmarks with

affine memory accesses, as well as a case study on a face detection application

with irregular memory accesses; Section 5.5 discusses related work on memory

optimization for software-programmable FPGAs.

5.1 Motivational Example

The rest of this chapter assumes the hardware architecture shown in Figure 5.1,

which contains K compute units and N memory banks connected by a crossbar.

For simplicity, we assume that each compute unit only has one memory load

port, and each memory bank only has one read port, but TraceBanking can be

generalized to handle multi-port memories. Memory bank n is connected to a

multiplexer with Mn inputs, where each input connects to one compute unit that

needs to access this bank. A conflict-free memory banking solution partitions a

monolithic memory array to be accessed into the N memory banks, such that
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Figure 5.1: Hardware template for memory banking.

each memory bank is never accessed by more than one compute unit concur-

rently during execution. When multiple compute units access the same memory

bank in the same clock cycle, we say there is a banking conflict. In certain cases,

the designer might prefer a conflict-less banking solution which allows a small

number of banking conflicts but uses fewer hardware resources. Our discus-

sions in this chapter will focus on conflict-free memory banking. Chapter 6 will

discuss how to extend TraceBanking to support conflict-less memory banking.

Figure 5.2a shows a simplified loop nest from bicubic interpolation. To

achieve an II of one, the accelerator must perform four concurrent memory ac-

cesses to a two-dimensional array in every cycle with the memory access pattern

illustrated in Figure 5.2b. In order to provide sufficient memory bandwidth un-

der the hardware template specified by Figure 5.1, we need K = N = 4. Existing

techniques, such as GMP [156], analyze the symbolic expression of memory ac-
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int A[Rows][Cols];
for (int i=1; i<Rows-1; i++)

for (int j=1; j<Cols-1; j++)
#pragma HLS pipeline II=1
foo(A[i-1][j-1], A[i-1][j+1],

A[i+1][j-1], A[i+1][j+1]);

(a) Loop kernel. (b) Memory access pattern.

Iteration addr0 addr1 addr2 addr3

0 000, 000 000, 010 010, 000 010, 010
1 000, 001 000, 011 010, 001 010, 011
... ... ... ... ...
5 000, 101 000, 111 010, 101 010, 111
... ... ... ... ...

Cols-1 001, 000 001, 010 011, 000 011, 010
... ... ... ... ...

(c) Sample memory trace.

i / j 0 1 2 3 4 5 6 7

0 0 1 2 3 0 1 2 3

1 0 1 2 3 0 1 2 3

2 1 2 3 0 1 2 3 0

3 1 2 3 0 1 2 3 0

4 2 3 0 1 2 3 0 1

5 2 3 0 1 2 3 0 1

6 3 0 1 2 3 0 1 2

7 3 0 1 2 3 0 1 2

(d) GMP solution.

i / j 0 1 2 3 4 5 6 7

0 0 0 1 1 0 0 1 1

1 0 0 1 1 0 0 1 1

2 2 2 3 3 2 2 3 3

3 2 2 3 3 2 2 3 3

4 0 0 1 1 0 0 1 1

5 0 0 1 1 0 0 1 1

6 2 2 3 3 2 2 3 3

7 2 2 3 3 2 2 3 3

(e) TraceBanking solution.

Figure 5.2: Bicubic interpolation example — (a) Pipelined loop kernel with four
memory accesses in each cycle. (b) Memory access pattern of the loop kernel
in two-dimensional memory space. (c) Memory trace generated by concatenat-
ing array indexes: Addresses are formed by concatenating the two-dimensional
array indexes i and j (for simplicity, i and j are both truncated to three bits).
(d) GMP banking solution [156]. (e) An alternative solution generated by Trace-
Banking.

cesses and search for appropriate coefficients to construct a banking function in

the form of bank(i, j) = b(α0i+α1 j)/Bc%N. Figure 5.2d shows the resulting 4-bank

partitioning scheme, where α0 = 1, α1 = 2, and B = 2.
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Figure 5.2e shows an alternative banking scheme, which is not in the solu-

tion space of the GMP approach. By examining the memory trace in Figure 5.2c,

we can identify two important address bits: the second-to-last bit of i, plus the

second-to-last bit of j. We refer to such bits as mask bits. These two bits com-

bined can differentiate the four memory accesses belonging to the same itera-

tion. As a result, we can divide the original array into four memory banks ac-

cording to the values of the two mask bits and arrive at the alternative scheme

in Figure 5.2e.

This example demonstrates the possibility of performing memory banking

based on a stream of memory addresses. Although the example has an affine

memory access pattern, TraceBanking is also capable of generating memory par-

titioning for applications with irregular memory accesses. Regardless of the

memory access pattern, it is important to identify the mask bits that form the

basis of banking. The value of mask bits is referred to as mask ID. In the follow-

ing sections, we will discuss how TraceBanking identifies mask bits and derives

efficient banking solutions accordingly.

5.2 TraceBanking Algorithm

Given a memory address stream and a fixed number of memory banks, a

straightforward method to find a banking solution with a minimum number of

banking conflicts is to use an ILP solver. However, ILP solvers are not scalable

in general. Therefore, there is a need for heuristics which can find an optimal

mapping between addresses and banks with a reasonable execution time. In this

section, we introduce the TraceBanking algorithm, which is a flow of heuristics
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Figure 5.3: TraceBanking flow.

to solve the memory banking problem described in Section 5.1. Specifically,

TraceBanking uses the number of available banks as a constraint and finds an

optimized mapping by solving three sub-problems: (1) Finding a set of promis-

ing address bits to form mask bits, (2) Finding a mapping between the generated

mask IDs and available banks, and (3) Computing the offset of each memory el-

ement after banking.

The complete flow of TraceBanking is shown in Figure 5.3. For clarity, here

we limit our discussion to finding conflict-free banking solutions, but it is pos-

sible to apply a more complex objective function to find conflict-less solutions

(e.g., area-optimized banking, power-aware banking) because TraceBanking can

accept different objective functions in the search process. Assuming the array

to be partitioned is accessed in a loop, TraceBanking takes the number of mem-

ory banks and a memory trace that specifies the memory accesses in each it-

eration as inputs. The memory trace is first cleaned up to combine redundant

accesses and duplicate iterations3. The clean memory trace is used to find the

3We consider memory accesses to be redundant if multiple accesses in the same iteration
request the same address. These accesses are combined into one. Two iterations in the memory
trace are considered as duplicates if they access the same set of addresses. A weight property is
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mask bits. After the initial set of mask bits is retrieved, the trace is further com-

pressed, then our graph coloring engine constructs the memory conflict graph

and tries to search for a feasible bank assignment. If a conflict-free solution is

found, then TraceBanking proceeds to offset generation and produces the final

banking solution. Otherwise, we iteratively add more bits to the mask using a

best-first search so that the memory accesses in the same iteration can be better

distinguished. This iteration terminates when the graph coloring engine finds a

conflict-free solution, or after we include all address bits into the mask.

5.2.1 Finding Mask Bits

TraceBanking finds a set of mask bits that can distinguish all memory accesses

within the same iteration using the findMaskBits algorithm shown in Fig-

ure 5.4. This algorithm takes the available number of banks, N, as well as the

clean memory trace, Tc, as inputs. It evaluates any candidate mask using two

objectives: mask IDs’ conflicts and conflict graph colorability. The search starts

with masks that include dlog2(NA)e bits, where NA is the maximum number of

memory accesses in all iterations in the clean memory trace. It tries all possi-

ble combinations of dlog2(NA)e bits; each combination constructs a unique mask

which maps addresses to mask IDs. Going through the clean memory trace, the

algorithm evaluates mask IDs conflicts by counting the number of times when

two addresses in the same iteration have the same mask ID. After finding a

mask that has the lowest number of mask IDs conflicts, the algorithm constructs

a conflict graph — every node in the graph represents a mask ID; edges between

nodes indicate mask IDs that appeared together in at least one iteration, and the

added to each iteration indicating its frequency in the memory trace.
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Algorithm 2 findMaskBits
Input : N – number of available banks;

Tc – clean memory trace.
Output: mask – initial mask.
for nbits← dlog2(NA)e to address size do

mask← all possible mask combinations with size nbits
while mask , null do

numcon f licts ← calculateConflicts(Tc, mask)
if numcon f licts 6 mincon f licts then
/* Possible Solution */
mincon f licts ← numcon f licts

/* Test graph colorability */
G← constructGraph(Tc, mask)
if χ(G) 6 minχ then

minχ ← χ(G)
end
if mincon f licts = 0 and minχ 6 N then

/* Early stopping if a feasible mask is found */
return mask

end
end
mask ← next(mask)

end
end
return mask

Figure 5.4: The heuristic in TraceBanking to find mask bits.

edges’ weights represent the frequency. Thus, the banking problem is trans-

formed to a graph coloring problem. The findMaskBits algorithm calculates

a lower bound for the colorability of the conflict graph by computing the max-

imum clique size of the graph χ(G); because graphs with maximum clique size

greater than the number of banks, N, cannot be colored with N colors.
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Algorithm 3 mapMaskIDsToBanks
Input : N – number of available banks;

Tc – clean memory trace;
mask – initial mask.

Output: addr mapping – a mapping from addresses to banks.
do

/* Perform mask-compression */
Tmc ←maskCompression(Tc, mask)
/* Construct a graph */
G ← constructGraph(Tmc)
/* Create a seed using greedy coloring */
S ← greedyGraphColoring(G, N)
/* Color G using evolutionary algorithm */
num con f licts, addr mapping← eaGraphColoring(S , N)
/* Ending conditions */
if bits remaining(mask) = 0 then

break
else if num con f licts , 0 then

mask ← performBestFirstSearch(Tc, mask)
end

while numcon f licts , 0;
return addr mapping

Figure 5.5: The heuristic in TraceBanking to map mask IDs to banks.

5.2.2 Mapping Mask IDs to Banks

After the initial mask is found by findMaskBits, the second step is to find

bank assignments for mask IDs such that the number of potential conflicts is

minimized. This step is performed by the mapMaskIDsToBanks algorithm

shown in Figure 5.5. To reduce complexity and redundant work, the clean

trace is further compressed by applying mask-compression, which is similar

to the cleanup step explained earlier except that the addresses are replaced with

their corresponding mask IDs. After that, the algorithm will construct a conflict

graph from the mask-compressed trace in the same way as described in Sec-
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tion 5.2.1. With the conflict graph, the banking problem is directly converted to

a maximum coloring problem. The number of banks represents the number of

colors available for coloring. The mapMaskIDsToBanks algorithm first gener-

ates a colored seed S using multiple order-based greedy heuristics [10, 77]. If

the seed is not conflict-free, the mapMaskIDsToBanks algorithm attempts to

minimize the number of conflicts using an evolutionary algorithm [77]. In each

evolutionary step, it performs a set of heuristics that show efficiency in coloring

memory-accesses graphs. Once a coloring for a conflict graph is found, the evo-

lutionary algorithm concludes and returns the banking function addr mapping

constructed from the coloring.

If the algorithm cannot find a conflict-free coloring in a bounded number of

evolutionary steps, it is assumed that the graph is not colorable. Then, Trace-

Banking proceeds to perform a best-first search. The search will modify the

mask by adding one extra bit to it. It is reasonable to assume that address bits

that are part of the final mask have an additive effect in reducing conflicts when

considered; as a result, the best-first search tests the colorability of remaining

bits by adding them to the mask in isolation. Then, the search includes the bit

that yields a graph with the minimum number of conflicts permanently to the

mask. Since this is a rough assumption, TraceBanking might use more bits than

theoretically needed to find a feasible banking solution.

5.2.3 Offset Generation

The banking function generated by the mapMaskIDsToBanks algorithm only

specifies the bank assignment of the memory elements. To properly access the
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Mask ID Bank ID i-Mask ID j-Mask ID
0 B0 0 0
1 B1 0 1
2 B2 0 2
3 B3 0 3
4 B1 1 0
5 B2 1 1
6 B3 1 2
7 B0 1 3
… … … …

Address: i (6 bit) | j (6 bit)
Original Mask: 000111 | 000011
Partitioned Mask:  i-Mask: 000111;  j-mask: 000011

L0

L1

…

(a) Banking solution in a look-up table.

i-Mask 
ID

Second-Level 
Table ID

0 L0
1 L1
2 L2
3 L3
4 L0
5 L1
6 L2
7 L3

Example:  i-Mask ID = 3, j-Mask ID = 2

First-Level Table
B0 B1 B2 B3

B1 B2 B3 B0

B2 B3 B0 B1

B3 B0 B1 B2

Second-Level Tables
L0

L1

L2

L3
i-Mask ID = 3

j-Mask ID = 2
Result: Bank = 1

L0[j-Mask ID] = (j-Mask ID + 0) % 4

L1[j-Mask ID] = (j-Mask ID + 1) % 4

L3[j-Mask ID] = (j-Mask ID + 3) % 4

Bank = (i-Mask ID + j-Mask ID) % 4

L2[j-Mask ID] = (j-Mask ID + 2) % 4

(b) Multi-level look-up table and closed-form solution.

Figure 5.6: Example of mapping banking solution into closed-form equations —
(a) Mask bits and the banking solution: An address bit noted as ’1’ is a mask bit,
while an address bit noted as ’0’ is not. The mask bits are divided into two parts,
i-Mask and j-Mask, according to the concatenation of array indices. (b) i-Mask is
used to index the first-level table, and j-Mask is used to index the corresponding
second-level table. Each second-level table can be represented with a closed-
form equation. Constants in bold indicate the relationship between bank ID
and i-Mask ID.

memory banks, we also need an offset function that maps each memory element

to an intra-bank offset. An intuitive method to generate the offset function is
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to simply scan every data element in the data domain and assign consecutive

integers to data elements in each bank. Without any constraints on the offset

function, this integer counting method is effective for both regular and irregu-

lar banking solutions. In addition, this method is optimal in terms of storage

overhead since the data elements in each bank are guaranteed to have consecu-

tive intra-bank offsets.

The generated banking and offset functions are represented in the form of

look-up tables by default. For applications with regular memory access pat-

terns, it is possible to convert the look-up tables generated by TraceBanking into

equivalent closed-form equations, which essentially uncovers and exploits the

regularity in the original application. The key idea is to decompose the look-up

table into multiple stages of smaller look-up tables, and use a simple search to

map the sub-tables into equations. The composition of memory addresses is re-

trieved from source-level instrumentation. An example is shown in Figure 5.6.

The original 5-bit mask shown in Figure 5.6a is divided into two disjoint sub-

masks: i-Mask and j-Mask — according to the corresponding array indices. By

grouping the entries with the same i-Mask ID, the original banking solution

shown in Figure 5.6a is decomposed into two levels, where the first level is

used to determine the look-up table for the second level. Figure 5.6b shows

how to index the decomposed look-up tables, where the i-Mask ID is used to in-

dex the first-level table and j-Mask ID is needed to index the second-level table

and retrieve the actual bank ID. As illustrated in Figure 5.6b, each second-level

look-up table can be represented by a modulus operation. By searching for co-

efficients to represent the relationship between i-Mask ID and the constants in

the equations (highlighted in bold in Figure 5.6b), we can represent the original

banking solution with one closed-form equation shown in Figure 5.6b. Clearly,
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this approach can easily be generalized to arrays with higher dimensions. We

also use a similar method to uncover the closed-form equation for an offset func-

tion, if such representation exists.

According to our experiments on a set of benchmarks with affine memory

accesses, all of the results generated by TraceBanking can be represented by our

equation template which is generalized from block-cyclic partitioning. Some of

our solutions fall into the category of the cyclic partitioning scheme mentioned

in the LTB approach [157]. Other solutions are not in the solution space of block-

cyclic partitioning. Nonetheless, they can be efficiently represented with a few

number of mask bits (e.g., bicubic solution in Figure 5.2e).

5.3 SMT-Based Verification

The discussion in Section 5.2 assumes that the input memory trace to TraceBank-

ing is complete. In other words, the input trace captures all memory accesses

from the entire software execution. In this case, our solution is supposed to be

sound in terms of guaranteeing no banking conflicts. When the given memory

trace is incomplete, it is necessary to have a formal mechanism to verify if the

resulting solution remains conflict-free under all possible scenarios.

To this end, we propose an SMT-based checker to validate the soundness of

the solution with the aid of a simple compiler analysis. The checker takes the

memory banking solution from TraceBanking, and the address expressions of

the loop kernel from compiler analysis. With this information, we can formulate

the SMT problem as shown in Figure 5.7a. The integer variables for the SMT

problem correspond to loop induction variables in the original application. We
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Define loop induction variables as
SMT variables:
int~i
Define banking function:
int B(

−−→
idx)

/*definition of the banking function*/
Define expressions of array indices:
int[ ] idx0(~i )
/*array indices in the 1st load*/
int[ ] idx1(~i )
/*array indices in the 2nd load*/
...
/*the total number of loads*/
const int instr cnt = K
Construct iteration domain D:
assert ((i[0] > 0) and (i[1] > 0) and ...)
Constraint for having at least one
conflict:
assert∨
∀~i∈D

∨
∀a,b∈[0,K−1],a,b

B(idxa(~i )) = B(idxb(~i ))

(a) General SMT formulation.

Define loop induction variables as
SMT variables:
int i, j
Define banking function:
int B(i, j)
/*select the mask bits from indices*/
return (i & 0x2) ‖ (( j & 0x2) >> 1)
Define expressions of array indices:
int[ ] idx0(i, j) = (i − 1, j − 1)
int[ ] idx1(i, j) = (i − 1, j + 1)
int[ ] idx2(i, j) = (i + 1, j − 1)
int[ ] idx3(i, j) = (i + 1, j + 1)
Construct iteration domain D:
assert ((i > 1) and ( j > 1) and
(i < Rows-1) and ( j < Cols-1))
Constraint for having at least one con-
flict:
assert ( (B(i-1, j-1) = B(i-1, j+1)) or
(B(i-1, j-1) = B(i+1, j-1)) or
(B(i-1, j-1) = B(i+1, j+1)) or
(B(i-1, j+1) = B(i+1, j-1)) or
(B(i-1, j+1) = B(i+1, j+1)) or
(B(i+1, j-1) = B(i+1, j+1)))

(b) Example of Bicubic interpolation.

Figure 5.7: SMT formulation of the banking solution checker — (a) General for-
mulation. (b) Example of Bicubic interpolation.

represent the banking solution as a function of array indices, and expressions

of array indices as functions of loop induction variables. Then, we specify the

iteration domain as a constraint. Additionally, we add one constraint of having

at least one banking conflict in the whole iteration domain. If the SMT problem

is proven to be unsatisfiable, there is no memory access conflict in all iterations

and the banking solution is valid.

The example shown in Figure 5.7b illustrates how the SMT-based checker

validates the banking solution for bicubic interpolation shown in Figure 5.2e:

the loop induction variables i and j are used as SMT variables, and the banking
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function is represented symbolically. The constraints specify boundaries for the

SMT variables, and compare every pair of addresses from the same iteration to

check for conflicts.

5.4 Experimental Results

In our experiments, memory traces are generated by source-level instrumenta-

tion of the loop kernels. The addresses in the memory traces are constructed

by concatenating multi-dimensional array indices. The core algorithm of Trace-

Banking processes the memory trace and generates banking and offset func-

tions. This algorithm is implemented in C. We use Vivado Design Suite 2016.2

from Xilinx [168] for high-level synthesis (HLS), logic synthesis and simulation.

The target FPGA device is Xilinx Virtex-7. The memory banking flow takes in

the memory trace and generates solutions in the form of look-up tables or close-

form equations. We use Z3, an SMT theorem prover, to verify the generated

solutions [45]. Each verified banking solution as well as the corresponding ap-

plication are implemented as synthesizable HLS code.

5.4.1 Results on Stencil Benchmarks

We adopt six stencil loop kernels from the GMP work [156]. In addition, we

add the Stencil3D benchmark from MachSuite [127], which accesses a three-

dimensional array, to stress test the robustness and scalability of our approach.

We substitute the processing phase of these loop kernels with a simple sum-

mation to better compare the overhead of different memory banking solutions.
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Table 5.1: Timing and resource usage comparison with the GMP [156] baseline,
where the minimum number of memory banks is used — target clock period =
5ns; BRAM = # of BRAMs; Slice = # of slices; LUT = # of lookup-tables; FF = #
of flip-flops; DSP = # of DSPs; CP = achieved clock period.

Benchmark # Accesses Method # Banks Mask Width BRAM Slice LUT FF DSP CP(ns)

BICUBIC 4
Baseline 4 - 4 74 217 163 0 3.89

Ours 4 2 4 74 (+0.0%) 212 (-2.3%) 184 (+13%) 0 (+0.0%) 3.66

DECONV 5
Baseline 5 - 5 185 531 383 10 3.52

Ours 5 12 5 182 (-1.6%) 541 (+1.9%) 383 (+0.0%) 10 (+0.0%) 3.37

DENOISE-UR 8
Baseline 8 - 8 180 616 391 0 4.15

Ours 8 4 8 188 (+4.4%) 623 (+1.1%) 427 (+9.2%) 0 (+0.0%) 3.62

MOTION C 4
Baseline 4 - 4 76 186 153 0 3.58

Ours 4 2 4 68 (-11%) 193 (+3.8%) 190 (+24%) 0 (+0.0%) 3.65

MOTION LV 6
Baseline 6 - 6 146 425 392 6 3.31

Ours 6 6 6 146 (+0.0%) 425 (+0.0%) 392 (+0.0%) 6 (+0.0%) 3.31

SOBEL 9
Baseline 9 - 9 405 1296 692 27 3.93

Ours 9 12 9 350 (-14%) 1059 (-18%) 719 (+3.9%) 27 (+0.0%) 3.96

STENCIL3D 7
Baseline 7 - 14 322 966 700 7 3.82

Ours 7 15 14 308 (-4.3%) 932 (-3.5%) 624 (-11%) 7 (+0.0%) 3.74

Average -3.8% -2.4% +5.6% +0.0%

We also implemented the GMP method [156] as the baseline. All the designs

are pipelined with II of one for maximum throughput. The input image size

of the designs is 64 × 48 (5 × 64 × 48 for Stencil3D), and the data is 8-bit wide.

We employ efficient algorithms from [159] to implement our own area-efficient

modulus functions. These customized modulus functions are used in both the

baseline and our approach.

Area Comparison Table 5.1 shows a comparison with the baseline when the

minimum number of banks is used. Both GMP and TraceBanking can generate

valid banking solutions with the minimum number of memory banks. Trace-

Banking is able to reduce the number of slices by 3.8% on average. One of

the reasons is that our banking function does not always use all the bits in the

address or array indices, which in turn reduces the complexity of the banking
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Table 5.2: Timing and resource usage comparison with the GMP [156] baseline,
where the number of memory banks is restricted to be a power-of-two — target
clock period = 5ns; BRAM = # of BRAMs; Slice = # of slices; LUT = # of lookup-
tables; FF = # of flip-flops; DSP = # of DSPs; CP = achieved clock period.

Benchmark # Accesses Method # Banks Mask Width BRAM Slice LUT FF DSP CP(ns)

DECONV 5
Baseline 8 - 8 129 418 278 0 3.63

Ours 8 4 8 125 (-3.1%) 411 (-1.7%) 302 (+8.6%) 0 (+0.0%) 3.11

MOTION LV 6
Baseline 8 - 8 117 369 237 0 3.56

Ours 8 3 8 119 (+1.7%) 391 (+6.0%) 282 (+19%) 0 (+0.0%) 3.77

SOBEL 9
Baseline 16 - 16 328 1114 525 0 4.34

Ours 16 4 16 340 (+3.7%) 1129 (+1.3%) 472 (-10%) 0 (+0.0%) 3.89

STENCIL3D 7
Baseline 8 - 8 195 649 443 0 3.87

Ours 8 6 8 201 (+3.1%) 655 (+0.9%) 450 (+1.6%) 0 (+0.0%) 3.70

Average +1.4% +1.6% +4.8% +0.0%

logic. For example, in Motion C, we are able to save 11% of slices with a 2-bit

mask. Another reason is that our approach is able to discover additional bank-

ing solutions that are not in the search space of the GMP method. For example,

in Sobel, our design uses all the 12 index bits but still saves 14% of slices com-

pared to the baseline. While the GMP solution has to perform mod 9 operations

due to its block-cyclic nature, our solution alternates among three consecutive

bank IDs in each row of the image, thus only requiring mod 3 operations which

are more area-efficient.

As pointed out by [156], an important design trade-off between logic com-

plexity and storage overhead in memory partitioning is to enforce the number

of memory banks to be a power-of-two instead of the minimum. Therefore,

we conduct this experiment for the four benchmarks whose number of banks

is not a power-of-two and compare our results with the baseline. Detailed re-

sults are shown in Table 5.2. Compared with the corresponding entries in Ta-

ble 5.1, the designs in Table 5.2 generally have less area even though they use

more memory banks and a more complex crossbar, because banking functions
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Table 5.3: Execution time of TraceBanking on Motion LV with different input
array sizes.

Array Size 12×12 32×24 64×48 128×96 320×240 640×480

Runtime (s) 0.0096 2.19 4.88 6.94 12.87 33.38

are significantly simplified when the number of banks is a power-of-two. For

GMP designs, multiplication and division become simple shifting operations,

while modulus operations are just selecting LSBs. For our designs, the resource

saving comes from the reduction in mask width. Compared with baseline, our

designs use a negligible 1.4% more slices. In general, the hardware generated by

our trace-based memory banking approach is comparable with GMP in terms

of area and timing.

Scalability TraceBanking is able to generate competitive memory banking so-

lutions from memory traces. However, using a complete memory trace may be

expensive when the memory trace is large. Table 5.3 shows how the execution

time of TraceBanking scales with an increasing array size. For applications with

affine memory accesses, we can apply trace reduction to reduce the runtime.

The general idea is to use a partial memory trace which covers an adequate

number of steps. Because of memory access pattern redundancy in the trace,

the generated banking scheme is likely to comply with banking schemes gener-

ated from a full trace. Since the banking scheme generated from a partial trace

is not guaranteed to be valid, we use the SMT-based checker proposed in Sec-

tion 5.3 to validate it. If the validation fails, we revert to using the complete

memory trace.

We perform experiments with reduced memory traces for all the benchmarks

listed in Table 5.1. For the size of the reduced trace, we use an empirical value
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Table 5.4: Execution time of TraceBanking with reduced memory trace —
Initial mask refers to the mask found by the findMaskBits algorithm de-
scribed in Section 5.2.1, while the final mask refers to the mask found by the
mapMaskIDsToBanks algorithm described in Section 5.2.2.

Benchmark Reduced Array Size Initial Mask Width Final Mask Width Runtime (s)

BICUBIC 8 × 8 2 2 0.0093

DENOISE 10 × 10 4 8 3.45

DENOISE2 16 × 16 4 4 0.017

MOTION C 8 × 8 2 2 0.0094

MOTION LV 12 × 12 4 4 0.0096

SOBEL 18 × 18 6 10 5.94

STENCIL3D 5 × 14 × 14 6 11 4.37

of 2 × #Banks in each dimension of the array. For example, if the loop kernel

conducts Sobel edge detection on a VGA image (640 × 480), rather than iterating

through the whole image, we execute the loop kernel on an 18×18 sub-image

and use this reduced trace as the input to TraceBanking. For all the benchmarks

listed in Table 5.1, TraceBanking is able to generate solutions which are proven

to be valid using the reduced traces as inputs. Moreover, these solutions are

identical to the ones generated from complete traces. The execution time of the

SMT-based checker is less than a second. As shown in Table 5.4, the execution

time of TraceBanking is reduced significantly by using partial traces without

sacrificing the quality of the solutions.

A critical observation from Table 5.4 is that, in most benchmarks, the final

solution is either in the beginning or at the very end of the search space. Trace-

Banking exploits the aforementioned observation in pruning the search space by

performing two simultaneous searches: forward search and backward search.

Forward search starts from the mask with minimum number of bits upward

to the mask with maximum number of bits, stopping with the first mask that
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pixel window[25][25];
pixel coord[12];
int filter_no;

CLASSIFIER:
for (filter_no=0; filter_no<2913; filter_no++){
#pragma HLS pipeline II=1
// read array indexes from look-up tables
int x0 = rectangles_array0[filter_no];
int y0 = rectangles_array1[filter_no];
int w0 = rectangles_array2[filter_no];
...
// access 8 data elements from array
coord[0] = window[y0][x0];
coord[1] = window[y0][x0+w0];
...
// if condition met, access 4 more elements
if ( (w2!=0) && (h2!=0) ) {
coord[8] = window[y2][x2];
...

}
else {
coord[8] = 0;
...

}
// process data
foo(coord);

}

Figure 5.8: Classifier loop kernel in a face detection accelerator [138].

yields no conflicts. On the other hand, backward search starts from the mask

with the maximum number of bits downward to the mask with the minimum

number of bits, stopping when no bit can be removed without causing conflicts.

5.4.2 Case Study: Haar Face Detection

In this section, we use Haar face detection [152] as a case study to show the ef-

ficacy of TraceBanking on applications with non-affine memory accesses. The

Haar algorithm uses cascaded classifiers to detect human faces rapidly and ro-

bustly. Thousands of weak classifiers are used in one run of the Haar algorithm,

and each of them has a distinct memory access pattern. Figure 5.8 shows a

code snippet of applying the weak classifiers in an HLS face detection accelera-
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Table 5.5: Timing and resource usage comparison of two face detection designs
— target clock period = 5ns; BRAM = # of BRAMs; Slice = # of slices; LUT = # of
lookup-tables; FF = # of flip-flops; DSP = # of DSPs; CP = achieved clock period;
Latency = latency of the loop kernel.

Implementation BRAM Slice LUT FF DSP CP(ns) Latency

TraceBanking 34 4915 8266 12559 6 4.52 2923

Full Mux 22 21275 53553 23785 3 9.22 2919

tor [138]. The array window is a 25 × 25 image buffer and is steadily shifted in

from the input image. Therefore, it is implemented with discrete registers. In

each iteration, the loop kernel reads pixels into the array coord and processes

them in the function foo(). There are 2913 classifiers in total. The constant

arrays rectangles array[] store the constants needed to compute the array

indices in each iteration. There is an if statement inside the loop kernel. When

the condition is met, the loop kernel accesses twelve pixels from the window

array in that iteration; otherwise, eight pixels are accessed.

In order to maximize throughput, we need to fully pipeline the CLASSIFIER

loop in Figure 5.8, where each classifier requires eight or twelve parallel ac-

cesses to the image buffer. Existing techniques cannot generate an efficient

banking solution for this problem due to two reasons: (1) The 2913 classifiers

have more than 2000 different memory access patterns in total, and (2) The array

indices are non-affine without any linear relationship with the iteration variable

filter no. With TraceBanking, we are able to generate a conflict-free bank-

ing solution to partition the image buffer window[25][25] into 28 memory

banks using the whole address as mask bits. The execution time is less than

a second. Because the window array is a shifting window implemented using

discrete registers, in this scenario, the memory banks are actually register banks.
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Our baseline is a straightforward design that uses twelve instances of 625-

to-1 multiplexer. We compare our design with this baseline and the result is

shown in Table 5.5. The TraceBanking design in Table 5.5 refers to the memory

banking design generated by our approach, and the Full Mux design refers to

the baseline. For these two designs, we only extract the loop kernel part shown

in Table 5.8 to better compare the banking hardware overhead. Our TraceBank-

ing design reduces Slice, LUT and Flip-Flop usage by 76.9%, 84.6% and 47.2%,

respectively. Meanwhile, the clock period is improved by 51.0%. BRAM usage

increases because of the overhead in storing look-up tables for banking and off-

set functions. The reduction in logic resource usage results from the simplified

muxing network in the TraceBanking design. In the TraceBanking design, two

levels of multiplexers are used to connect the registers with the compute units,

and each multiplexer has less than 30 inputs. In contrast, the Full Mux design

uses twelve instances of 625-to-1 multiplexers, which consumes a lot more area.

Even worse, the Full Mux design is extremely hard to route and unable to meet

the 5ns timing target. Therefore, even though the Full Mux design has similar

latency with the TraceBanking design, the total execution time of the loop kernel

is much worse. Clearly, the banking scheme generated by TraceBanking helps

improve both area and performance of the design, which contains very irregular

memory accesses.

5.5 Related Work

There is a recent line of research that investigates the problem of automatic array

partitioning in the context of HLS [180]. Initial efforts focus on one-dimensional

arrays and attempt to find a proper cyclic partitioning with optimal schedul-
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ing to ensure conflict-free parallel data accesses [39, 94]. More recent proposals

such as [156, 157] generalize these results to handle nested loops and multi-

dimensional arrays.

Notably, linear transformation is extensively used among the existing array

partitioning techniques. For example, the LTB approach [157] searches for a co-

efficient vector ~α to construct a cyclic banking function bank(~x) = (~α · ~x)%N,

given the number of banks N and the affine memory access pattern. Meng

et al. proposed a fast algorithm to generate the LTB coefficient vector ~α ac-

cording to the topology of the memory access pattern in a multi-dimensional

memory space [105]. The GMP approach generalizes the LTB algorithm and

is able to generate block-cyclic banking functions in the form of bank(~x) =

b(~α·~x)/Bc%N [156]. Cilardo et al. proposed a lattice-based banking algorithm us-

ing polyhedron analysis [37]. After our work was published, more recent works

on memory banking are no longer limited to linear transformations. For exam-

ple, Escobedo and Lin proposed to derive optimal banking schemes for stencil

applications using graph coloring [49].

The aforementioned techniques all employ static compile-time analysis and

are only effective with affine data access patterns. To the best of our knowledge,

we are the first to introduce a comprehensive trace-based banking algorithm

that is not limited to affine memory accesses. Along the lines of trace-based

memory optimization, one relevant proposal is [18], which attempts to partition

an array of data structures into distinct arrays by leveraging hints from software

memory traces. However, this technique does not directly tackle memory bank-

ing for multi-dimensional arrays. After our work, Escobedo and Lin proposed

a line of techniques to tackle memory partitioning for applications with non-
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stencil memory access patterns [48, 50]. Zou and Lin proposed Graph-Morphing,

which automatically generates memory partitioning solutions for non-stencil

applications by analyzing dependence graphs [187]. Chen and Anderson pro-

posed to leverage trace-based simulation for selecting the optimal memory par-

titioning scheme supported by LegUp [32].

Aside from memory partitioning, parallel data accesses can be further facil-

itated by creating data reuse buffers that exploit the locality in memory access

patterns. For many image processing and signal processing applications, data

reuse is a more hardware-efficient solution due to the regular memory access

patterns in stencil-like operations. Along these lines, Su et al. introduced an effi-

cient method of combining linear reuse analysis and cyclic memory partitioning

to generate application-specific reuse-chains and memory-banking [139]. Li et

al. proposed a more generic approach which is able to handle the combination

of multiple affine memory access patterns [95]. TraceBanking does not directly

tackle the memory reuse problem, but it can be used to generate effective mem-

ory banking solutions after the reuse pattern is determined.
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CHAPTER 6

CONCLUSION

The increasing scale and complexity of modern computational platforms

is causing unprecedented challenges in the productivity of hardware design.

Manual design of effective heuristics and optimized architectural implemen-

tations is becoming more and more difficult, which results in an increasing

number of design iterations. In addition, accurate early-stage design modeling

becomes increasingly challenging, which hinders design space exploration by

forcing designers to rely on the time-consuming evaluation steps at low levels

of abstraction.

Recent advances in machine learning (ML) provides an opportunity to fur-

ther improve the modeling accuracy and automate the optimization process for

digital designs. While modern ML models can achieve superhuman perfor-

mance on a wide range of tasks, they must be trained using a large amount of

data. In the hardware design flow, simulation traces are an abundant source

of information that can be easily obtained from various evaluation and verifi-

cation steps. Specifically, we propose trace-based learning solutions for three

challenging problems in hardware design: early-stage power estimation for

IP cores, automated logic generation for partially reconfigurable modules, and

memory banking for FPGA accelerators. In this dissertation, we have demon-

strated the effectiveness of the trace-based learning methodology on these three

problems, and we believe this methodology should have wider applications for

many other problems in digital design.
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6.1 Dissertation Summary and Contributions

This dissertation presents three trace-based learning techniques for agile hard-

ware design and design automation. By exploiting the recent advances in ML,

the techniques presented in this dissertation aim to assist hardware designers

by (1) providing accurate quality-of-result (QoR) estimations early in the design

flow to reduce design turn-around time, and (2) automating heuristic design

and hardware optimization to reduce manual design effort. At a high level, this

dissertation demonstrates that trace-based, design-specific learning can effec-

tively improve a single design and shows that this methodology is applicable

to a variety of different problems in the electronic design automation (EDA)

flow. Chapter 1 starts this dissertation by outlining the productivity bottlenecks

in hardware design and the challenges in applying ML to EDA. These chal-

lenges motivate design-specific learning using simulation traces, which is the

common methodology shared by the three techniques proposed in this disser-

tation. Chapter 2 prepares readers with sufficient background knowledge by

introducing the preliminaries of the digital design flow and the ML techniques

used in this dissertation.

For early-stage QoR modeling, this dissertation focuses on fine-grained

power estimation for fixed-function IP cores. Chapter 3 describes how we

use state-of-the-art ML models to enable fast and accurate power estimation at

register-transfer level (RTL) and cycle-level. In this work, we explore different

ML models and feature encoding mechanisms, and achieve gate-level estima-

tion accuracy for realistic designs at both RTL and cycle-level. The DAC’19 pub-

lication of PRIMAL-RTL is the first work to introduce deep learning to power

estimation [186].
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This dissertation further presents two approaches to automating the hard-

ware design and optimization process. Chapter 4 introduces Circuit Distillation,

a key technique for filling the missing link between deep learning (DL) mod-

els and compact logic implementations. Using a combination of reinforcement

learning (RL) and ML techniques, Circuit Distillation is the first fully automated

flow to generate combinational arbitration logic from traces. Circuit Distilla-

tion leverages tree-based models to effectively convert a pretrained DL model

into combinational arbitration logic. Users can balance the trade-off between

area and performance by regularizing and quantizing the tree-based models.

The Circuit Distillation technique shows strong results on our network-on-chip

(NoC) arbitration case study, and we believe similar methodologies can be effec-

tive for many other problems in computer architecture design. The TraceBank-

ing technique introduced in Chapter 5 takes another direction by automatically

optimizing the on-chip memory subsystem for FPGA accelerators. TraceBank-

ing uses a self-designed, graph-based algorithm to learn from functional-level

simulation traces and search for conflict-free memory banking solutions. Aside

from being able to handle any arbitrary memory access patterns that are known

at compile time, TraceBanking is also the first trace-based memory banking tech-

nique for high-level synthesis.

6.2 Future Directions

Trace-Based Learning and Design-Agnostic Learning Despite the efforts pre-

sented in this dissertation, the productivity of hardware design is still facing

significant challenges, and a lot of problems in the digital design flow can be po-

tentially solved using ML. Trace-based learning can be of particular interest for
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problems that require accurate models to make fine-grained predictions, such

as performance debugging, verification, and micro-architectural optimization.

Such problems can benefit more from the rich details exposed by simulation

traces.

Design-specific learning, on the other hand, tries to find a sweet spot by trad-

ing off the generality of the learned ML model with the effectiveness of learn-

ing and the effort of training data collection. Ideally, developers would prefer

design-agnostic ML models that can make accurate predictions for any arbitrary

design. To achieve this goal, the ML models need to understand the fundamen-

tals of digital design, obtain enough knowledge about the target technology

library, and predict the sophisticated optimizations that might be performed by

the EDA tools. To accomplish such a challenging learning task, the first step is

to make available a comprehensive, open-source collection of hardware designs

for researchers to train ML models, establish common baselines, and evaluate

new learning techniques. To this end, we have seen exciting developments in

open-source hardware and EDA flows in the past several years [7, 16, 25, 128]. In

addition, there is an active body of research on applying and adapting emerg-

ing ML models to the EDA problems. For example, graph neural networks

(GNNs) [59, 84] are attractive for many tasks in the EDA toolchain because dig-

ital circuits can be represented as a graph of gates or modules from different

abstraction levels. Recent works have demonstrated the effectiveness of GNNs

on FPGA timing estimation [150], test-point insertion and timing model selec-

tion [101], instruction vulnerability detection [78], and switching activity esti-

mation [179].
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Transferable Power Estimation While the PRIMAL techniques introduced in

Chapter 3 can achieve gate-level estimation accuracy from higher levels of ab-

straction, the ML models need to be retrained once the gate-level netlist of the

IP core is modified. This drawback limits the application of PRIMAL in design

space exploration. However, as discussed above, directly training a design-

agnostic model for fine-grained power estimation is difficult due to the lack

of training data and the difficulty of this learning task itself. Existing works

on using design-agnostic learning to accelerate power estimation target aver-

age power estimation instead of time-based power estimation [96, 179]. One

alternative is to extend PRIMAL to domain-specific learning instead of design-

agnostic learning. During design space exploration, the ML models can be grad-

ually trained to learn the power characteristics of a family of similar designs.

A graph-based feature representation can be used to represent the connections

between operators and modules, and GNN models might be able to provide

accurate predictions after observing several design points. GRANNITE [179]

explores using GNNs for average power estimation. While GRANNITE only

estimates average switching factors of circuit nodes and still relies on the power

analysis tool to provide the final power estimation, it demonstrates that GNN

models can generalize well to unseen designs on the power estimation task.

Learning Reconfigurable and Sequential Logic One limitation of our Cir-

cuit Distillation approach is that the learned logic is not guaranteed to gener-

alize to unseen workloads. Since our approach generates combinational logic,

one straightforward solution is to incorporate more realistic workloads into the

training process. Instead of generating hard-wired combinational logic, an al-

ternative solution is to generate hardware modules that are reconfigurable. Ex-
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amples include look-up table networks and multiplexer networks, which can

be configured using programmable registers to implement different functions.

However, compared to combinational logic, adding reconfigurability introduces

significant overhead in area and latency. An efficient implementation is neces-

sary to achieve a good trade-off between flexibility, area, and latency.

For many problems in computer architecture, such as branch prediction,

cache prefetching, and cache replacement, the hardware must make decisions

based on history information. As a result, the hardware module to fulfill the

functionality must be stateful rather than combinational. Similarly, when using

ML to solve these problems, stateful models such as recurrent neural networks

(RNNs) are usually more suitable. Circuit Distillation is only capable of gen-

erating combinational logic from stateless ML models, thus cannot be directly

applied to these problems. Extending Circuit Distillation to convert stateful ML

models to sequential logic implementations would be a promising direction for

future work.

TraceBanking for More Generic Hardware Templates TraceBanking can be

extended to support different hardware templates other than the one discussed

in Chapter 5. Modern FPGA devices usually contain dual-port BRAMs. Assum-

ing the target device has M-ported memories, the findMaskBits algorithm

and the graph coloring engine can be modified such that cases where no more

than M concurrent accesses are made to the same memory bank are not consid-

ered as conflicts. Under certain circumstances, designers may prefer a non-unit

II to balance throughput and resource utilization. TraceBanking can cooperate

with the HLS scheduling algorithm in this situation, where the scheduling algo-

rithm decides which memory accesses are performed concurrently and Trace-
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Banking generates a banking solution.

Multi-Objective Search for Design Optimization Both Circuit Distillation

and TraceBanking can be considered as search-based design optimization tech-

niques. While in this dissertation these techniques only consider one objec-

tive during the search process, they can be extended to support multi-objective

search and reflect the designers’ emphasis on other design objectives. The re-

ward function in Circuit Distillation can be tuned to optimize different quality-

of-service (QoS) metrics, or even incorporate the area of the arbitration logic

to co-optimize network performance and area. The core of TraceBanking is a

multi-objective search engine. TraceBanking can be easily extended to support

conflict-less banking by specifying a different objective function. For example,

suppose a high-level area model of the banking hardware is available, Trace-

Banking can use a weighted sum of the number of banking conflicts and the

area estimate to achieve a good trade-off between latency and area. Other met-

rics such as frequency and power can also be included.

From another angle, Circuit Distillation and TraceBanking can also be

viewed as performing design space exploration (DSE) using learning-based

methods. With the growing complexity of modern hardware, rapid DSE has be-

come an active line of research, especially for high-level synthesis (HLS) where

a large number of design points can be explored without major changes in the

source code. Earlier works inspect the control-data flow graph generated by

the HLS compiler front-end, use carefully-designed analytical models to esti-

mate the performance and resource utilization of each design point, and auto-

matically explore different design points using exhaustive search or smart grid

search [132, 155, 181, 183]. A more recent work [162] exploits state-of-the-art
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GNN models for performance estimation, and leverages RL techniques to ex-

plore the design space. The modeling methodologies and search algorithms

used in these works can potentially be integrated into Circuit Distillation and

TraceBanking, thus enabling more intelligent multi-objective search.
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