
Boosting the Performance of CNN Accelerators with Dynamic
Fine-Grained Channel Gating

Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward Suh
Cornell University, Ithaca, NY

{wh399, yz882, cmd353, zhiruz, gs272}@cornell.edu

ABSTRACT
This paper proposes a new fine-grained dynamic pruning technique
for CNN inference, named channel gating, and presents an acceler-
ator architecture that can effectively exploit the dynamic sparsity.
Intuitively, channel gating identifies the regions in the feature map
of each CNN layer that contribute less to the classification result
and turns off a subset of channels for computing the activations in
these less important regions. Unlike static network pruning, which
removes redundant weights or neurons prior to inference, chan-
nel gating exploits dynamic sparsity specific to each input at run
time and in a structured manner. To maximize compute savings
while minimizing accuracy loss, channel gating learns the gating
thresholds together with weights automatically through training.
Experimental results show that the proposed approach can signifi-
cantly speed up state-of-the-art networks with a marginal accuracy
loss, and enable a trade-off between performance and accuracy.
This paper also shows that channel gating can be supported with
a small set of extensions to a CNN accelerator, and implements a
prototype for quantized ResNet-18 models. The accelerator shows
an average speedup of 2.3× for ImageNet when the theoretical
FLOP reduction is 2.8×, indicating that the hardware can effectively
exploit the dynamic sparsity exposed by channel gating.

CCS CONCEPTS
•Computingmethodologies→Neural networks; •Computer
systems organization→ Neural networks.

KEYWORDS
neural networks, dynamic pruning, algorithm-hardware co-design

ACM Reference Format:
Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward
Suh. 2019. Boosting the Performance of CNN Accelerators with Dynamic
Fine-Grained Channel Gating. In The 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-52), October 12–16, 2019, Columbus,
OH, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3352460.3358283

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358283

1 INTRODUCTION
Convolutional neural networks (CNNs) have demonstrated human-
level accuracy in many vision-related tasks and are being increas-
ingly adopted for many applications, including real-time tasks such
as autonomous driving and robotic manipulation. Unfortunately,
state-of-the-art CNNs are highly compute-intensive, as they typi-
cally demand about 109 floating point operations (FLOPs) per in-
ference [1]. In order to deploy CNNs in a much broader range of
applications, especially in embedded and mobile settings [2], we
need to reduce the high computational cost without noticeably
sacrificing inference accuracy. In this paper, we propose a new dy-
namic pruning technique, named channel gating, which removes
ineffectual computations specific to each input at run time, and
present a hardware accelerator architecture to effectively exploit
the dynamic sparsity introduced by channel gating.

Figure 1 illustrates the intuition behind channel gating by show-
ing the heat maps of the normalized computational cost for two
sample images. The “cool” colors on the decision maps indicate that
computation for the region can substantially be pruned by channel
gating. For these regions, only a small subset of input channels need
to be used to produce output activations. Intuitively, these regions
correspond to less important input features such as backgrounds.
While several prior studies have proposed statically pruning inef-
fectual features and weights (i.e. those with small magnitude) [3–6],
these static approaches prune networks for all inputs and cannot
exploit dynamic input-specific characteristics. The static sparsity in-
troduced by these existing pruning approaches reduces a constant
amount of computation regardless of the input. While dynamic
pruning approaches have been recently proposed [7–9], the previ-
ous approaches only focus on limited form of dynamic sparsity, in
particular zeros from the ReLU activation. Channel gating aims to
achieve more computation reduction and less accuracy loss by ex-
ploiting more general forms of dynamic sparsity and co-designing a
pruning algorithm, a training method, and hardware architectures.

The key idea in channel gating is to identify ineffective receptive
fields in input features and reduce the computation on these fields
by gating a portion of the input channels. More specifically, to com-
pute an output activation in a convolutional (or fully-connected)
layer, we first perform a partial computation on a subset of input
channels (i.e., Wp ∗ xp in Figure 2). We found that these partial
sums are strongly correlated with the final sums, and can serve
as good indicators on which spatial locations are more important.
The partial sum is then compared to a learnable threshold using a
gate function, which generates a binary decision for each output
activation. If the decision is 1, we continue computing the convo-
lution on the rest of the channels (i.e., xr). Otherwise, we simply
skip the remaining computation and feed the partial sum to the
normalization and activation function. As CNN inference is mostly

https://doi.org/10.1145/3352460.3358283
https://doi.org/10.1145/3352460.3358283
https://doi.org/10.1145/3352460.3358283

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward Suh

H
e

ig
h
t

Input image

Width

Input activation Decision map

0.4

0.5

0.6

0.7

0.8

0.9

(a) LeNet on the MNIST dataset

H
e

ig
h

t

Width

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Input image Input activation Decision map

(b) ResNet-18 on the CIFAR-10 dataset
Figure 1: Input feature vs. decision map — Spatial locations
with a larger number in the decision map are more important
and need more computations. The decision map is obtained by
averaging the gating decisions in a CGNet on CIFAR-10 for each
spatial location over all output channels.

Figure 2: Illustration of channel gating — A subset of input
channels are used to generate a decision map, which prunes away
unnecessary computation in the rest of input channels.

compute-bound, our work currently focuses on minimizing the
computational cost instead of reducing off-chip memory accesses.

In order to achieve high accuracy while reducing computation,
the gating thresholds as well as the network weights for a CNN
with channel gating (CGNet) are learned through a training process.
The training process also allows channel gating to target a varying
level of pruning and explore the trade-off between performance
and accuracy. Experimental results show that channel gating can
significantly reduce the amount of computation in state-of-the-
art networks with a marginal impact on accuracy. For example,
channel gating reduces the computation (in FLOPs) in ResNet-18
for ImageNet by 2× with a 1% accuracy loss or by 2.4× with a 1.5%
accuracy loss. With knowledge distillation, channel gating can save
even more computation (2.8×) with less accuracy loss (0.2%).

In order to translate the sparsity created by pruning into mean-
ingful performance and energy benefits, a pruning scheme must
be realized as an efficient software/hardware implementation. Un-
fortunately, existing fine-grained pruning schemes [3, 7, 8, 10] lead

to irregular sparsity and often require significant changes to ex-
isting CNN accelerators. In contrast, channel gating is designed
to provide structured sparsity by pruning contiguous input chan-
nels at a predetermined decision point. As a result, channel gating
maintains the locality and the regularity in both computations and
data accesses, and can be efficiently implemented by augmenting a
conventional CNN accelerator.

In this paper, we introduce a new CNN accelerator architecture
for channel gating and show that the structured sparsity can be
effectively exploited in hardware to significantly improve perfor-
mance and energy efficiency of CNNs. The proposed architecture
extends a weight-stationary architecture to handle both dense and
sparse computations in channel gating networks. Amajor challenge
in accelerating the sparse computation lies in efficiently loading
the convolutional windows in feature maps. The proposed archi-
tecture uses a new banking scheme that allows parallel accesses
to activations in arbitrary convolutional windows to address this
challenge. The architecture also exploits different loop tiling and re-
ordering strategies for dense and sparse computations to maximize
the processing unit utilization and the overall throughput. More-
over, the proposed architecture can effectively run both regular
CNNs without pruning and channel gating networks.

To evaluate the channel gating accelerator, we implemented
RTL prototypes of the 8-bit quantized ResNet-18 with and with-
out channel gating, targeting a 28nm TSMC standard cell library.
These ASIC implementations demonstrate that supporting channel
gating only requires small hardware changes with moderate area
and power overhead. Our results also show that the sparsity intro-
duced by channel gating can be efficiently exploited to speed up
CNN inference; the actual speedup on the accelerator is close to the
theoretical computation reduction. For example, the CGNet acceler-
ator achieves a 2.3× average speedup over the baseline accelerator
for ImageNet, when the channel gating reduces the computation
(FLOP) by 2.8×.

This paper makes the following major contributions:

• We introduce a novel dynamic fine-grained pruning ap-
proach that can significantly reduce the computation cost of
a CNN by selectively pruning computation for each output
activation at run time.

• We propose a unified accelerator architecture that can effi-
ciently execute both regular CNNs and channel-gating net-
works (CGNets).

• We build an accelerator prototype in RTL and experimentally
demonstrate the benefits of channel gating on ResNet-18 for
CIFAR-10 and ImageNet.

2 CNNS WITH CHANNEL GATING
This section introduces channel gating neural network (CGNet).
We first describe CGNet with a single neuron, then generalize the
idea and present the full structure of a convolutional layer equipped
with channel gating. Although we present CGNet within the scope
of convolutional neural networks, CGNet can also be extended to
multi-layer perceptrons.

Figure 3 shows a neuron taking x as an input where x ∈ Rc .
These c channels are split into two groups, where one group con-
tains the firstp channels and the other has the remaining r channels.

Boosting the Performance of CNN Accelerators with Dynamic Fine-Grained Channel Gating MICRO-52, October 12–16, 2019, Columbus, OH, USA

Table 1: Structural parameters in CGNet.
Parameter Description

χ Fraction of input channels in the base path.
kl Filter size for the l ’th conv. layer.
cl Number of output channels in the l ’th conv. layer.
hl Height of the output feature in the l ’th conv. layer.
wl Width of the output feature in the l ’th conv. layer.

Based on the dot product between the first p channels and the cor-
responding weights, the gate turns the rest of the channels on or
off. If the channels are off, they do not contribute to the output of
the neuron, and importantly their dot product with corresponding
weights does not need to be computed. Thus, the amount of com-
putation (depending on how often the gate is off) can be reduced
by channel gating.

2.1 CGNet Block
In practice, CNNs have many neurons which are organized into
tensors. Without loss of generality, let xl , yl , Wl be the input
features, output features, and weights of layer l , respectively, where
xl ∈ Rcl−1×wl−1×hl−1 , yl ∈ Rcl×wl×hl , and Wl ∈ Rcl×cl−1×kl×kl .
Table 1 summarizes the parameters. A typical CNN block includes
convolution (∗), batch normalization (BN) [11], and an activation
function (f). The output feature can be written as y = f (BN(W ∗

x))1.
To apply channel gating, we first split the input features and

weights statically along the channel dimension into two tensors
where x = [xp, xr] andW = [Wp,Wr]. For χ ∈ [0, 1], xp consists of
χ fraction of the input channels while the rest of the channels form
xr, where xp ∈ Rχcl−1×wl−1×hl−1 and xr ∈ R(1−χ)cl−1×wl−1×hl−1 .
Similarly, let Wp and Wr be the weights associated with xp and xr
where Wp ∈ Rχcl−1×cl×kl×kl and Wr ∈ R

(1−χ)cl−1×cl×kl×kl . This
decomposition means thatW ∗ x =Wp ∗ xp +Wr ∗ xr. Then, the
partial sumWp ∗ xp is fed into the gate (s) to generate the binary
decision tensor (d ∈ Rcl×wl×hl). A binary value 0 in di, j,k indicates
gating the rest of the channels for the output activation with indices
(i, j,k).

The inference of CGNet is divided into two possible paths, as
shown in Figure 3, with different frequency of execution. We refer
to the path which is always taken as the base path (colored in grey)
and the other path as the conditional path given that it may be
gated for some activations. The final output is the activation-level
combination of the outputs from both the base and conditional
paths, which can be written as follows (i, j,k are the indices of a
component in a tensor of rank three):

ỹi, j,k =

{
f (BN(Wp ∗ xp)i, j,k), if s(Wp ∗ xp)i, j,k = 0
f (BN(Wp ∗ xp +Wr ∗ xr)i, j,k), otherwise

(1)

We propose CGNet based on the observation that a partial sum
(PSUM) is a good predictor for the final sum (FSUM). We reduce
computation on a subset of output activations by skipping Wr ∗ xr
and approximating these activations with their PSUMs. We use the
Pearson correlation coefficient to measure the linear correlation
between the PSUM and FSUM with different χ values. The average

1The bias term is ignored because of batch normalization.

f

s

x

..

Wp

Wr

y

xr

xp

...

...
*

*
..

Figure 3: CGNet with a single neuron.

Pearson correlation coefficient of 20 convolutional layers over 1000
random samples in ResNet-18 equals to 0.56, 0.72, and 0.86 when χ
is 1

8 ,
1
4 , and

1
2 , respectively. The results suggest that the PSUM and

the FSUM of convolutional layers are moderately correlated even
when χ = 1

8 .

2.2 Gate Function
To minimize the computational cost, the gate function should only
allow a small fraction of the output activations to take the condi-
tional path. We design the gate based on the ReLU activation [12]
in the baseline network. As the partial sum with small magnitude is
less important than the one with higher magnitude, the gate turns
off the remaining channels for the output activation whose partial
sum is small. For example, activation with a large negative partial
sum is likely to be zeroed out by ReLU and has no contribution to
the output. We introduce a learnable threshold per output channel
(∆ ∈ Rcl) and broadcast it to Rcl×wl×hl . The gate function (s) is
defined using the Heaviside step function (θ : Rc×w×h 7→ Rc×w×h),
which only requires a simple comparison to implement.

s(x,∆) = θ (x − ∆) =

{
1, if x ≥ ∆

0, otherwise
(2)

Let τ be the fraction of activations taking the conditional path.
To find ∆ which satisfies P(Wp ∗ xp < ∆) = τ , we use batch
normalization without scale and shift to normalizeWp ∗ xp.

The batch normalization normalizes the input features using
the moving mean (E[x]) and variance (Var(x)) during inference.
To eliminate extra parameters and computational cost, we merge
the batch normalization on the PSUMs with the gate function. The
merged gate contains cl thresholds and performswl · hl · cl point-
wise comparisons between the PSUMs and thresholds.

2.3 Training CGNet
Making CGNets end-to-end learnable is essential to minimize the
accuracy degradation of pruning. We first reformulate the output
of the channel gating block ỹ without the if-else expression in
Equation (1). Instead, we subtract the output of the gate (binary
mask) from an all-one tensor of rank three (J ∈ Rcl×wl×hl) to
express the else condition and combine the two cases with an
additionwhichmakes all the operators differentiable except the gate
function. In addition, we discuss three important mechanisms to
reduce computation with minimal accuracy loss: (1) approximating
the non-differentiable gate function; (2) inducing sparsity in the
conditional path; (3) selecting a subset of channels as the input to
the base path.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward Suh

Table 2: Design parameters for the CGNet accelerator.

Parameter Explanation

M Number of multipliers per PE.
P Number of PEs per PE row.
R Number of PE rows in the accelerator.

Non-differentiable gate function.As the Heaviside step func-
tion is not differentiable, the gradients toward batch normalized
partial sum (BN(Wp ∗ xp)) and the threshold (∆) cannot be com-
puted directly. We propose to approximate the gate with a smooth
function which is differentiable with respect to x and ∆ during the
backward propagation. Here, we propose to use

s(x,∆) =
1

1 + eϵ ·(x−∆)
(3)

to approximate the gate only for the backward propagation when
the ReLU activation is used. ϵ is a hyperparameter which can be
tuned to adjust the difference between the approximated function
and the gate. We implement a custom operator in MxNet [13] which
takes the batch normalized partial sum as the input and generate
the gate decisions.

Sparsity-inducing mechanism. The batch normalized input
to the gate follows the standard normal distribution, and therefore
the fraction of the FLOPs pruned increases monotonically with ∆.
As a result, reducing computation cost is equivalent to having a
larger ∆. To motivate reducing computational cost during training,
we set a target ∆ value, denoted as T ; for the entire network, we
add the squared difference between channel-specific ∆l and T (i.e.,
λ
∑
l (T − ∆l)

2) into the loss function, where λ is a scaling factor.
T can be tuned to achieve different degrees of FLOP reduction.
Since the gate function is differentiable, per-channel thresholds are
optimized by SGD to minimize accuracy loss for a givenT . In other
words, the actual gating threshold values are automatically learned
for each channel in each layer.

Channel selection.We do not manually select channels for the
base path; instead, we simply use the first χ fraction of channels as
xp. In our experiments, we observed that the fixed channel selection
scheme works well as the network weights are learned through
training, consideringwhich channels are in the base path. To further
improve the accuracy of CGNets, channel grouping and shuffling
can be used to “equalize” the importance of each channel [14]. The
channel grouping and shuffling improve the accuracy by 1% over
the fixed channel selection scheme for ImageNet.

3 CGNET ACCELERATOR ARCHITECTURE
In this section, we propose a unified architecture which can ac-
celerate both ordinary CNNs and channel gating networks. Our
proposed architecture extends a weight-stationary architecture to
handle both base and conditional paths without significant changes
to the baseline architecture that executes regular CNNs. Hereafter,
we refer to the computation in the base path as dense convolution,
and the conditional path as sampled feature convolution.

3.1 Architecture Overview
The overall system architecture is shown in Figure 5(a). The acceler-
ator communicates with the CPU through an SoC bus and off-chip

DRAM through two DDR channels. The host CPU issues commands
containing layer descriptions to the accelerator. The weights of a
channel gating network model are stored in the off-chip DRAM.
During execution, the weights of a layer are prefetched to on-chip
global weight buffers. Weights are moved to local weight buffers
near the PE array to maximize data locality and reuse. When pos-
sible, the output feature maps of intermediate layers are buffered
on-chip to minimize off-chip data transfers. The on-chip weights
and feature maps are split and stored in the dense and sparse buffers.
Double buffering of weights is applied to overlap computation and
off-chip transfers. A batch normalization layer, an activation func-
tion, and a pooling layer, if present, are combined with the previous
convolutional or fully-connected layer.

Figure 5(b) depicts the proposed dense-sparse accelerator archi-
tecture. We adopt the widely-used weight stationary architecture
to process the base path. As the base path can be considered as an
unpruned CNN, this architecture for dense convolution represents
the baseline. In that sense, the proposed dense-sparse architecture
is capable of accelerating both regular CNNs and CGNets on a
single hardware platform. The baseline accelerator exploits the
parallelism in output channel (cl), input channel (cl−1), and spatial
(kl × kl window) dimensions. There are three main components in
the baseline architecture — convolution engines, a data fetching
unit, and a feature map store unit, which are colored in blue. Table 2
lists the key parameters of the dense-sparse architecture. The con-
volution engine consists of R × P processing elements (PEs). Each
PE containsM multipliers. For networks with only convolutional
filters of size k , we should pick P = k2 to maximize PE utilization.
If the network contains convolutional filters of different sizes, tech-
niques similar to [15] can be used to choose an optimal value of P .
Each PE computes a 1-by-1 convolution of M input channels per
clock cycle. Assuming P = k2, a k-by-k convolution of M input
channels is mapped to a row of PEs in the baseline architecture,
and the whole PE array computes R output activations on the same
spatial location in R output channels. The value ofM should divide
the minimum number of input channels in all layers of the network.

The feature maps are stored in on-chip feature buffers to mini-
mize the number of off-chip memory accesses. As a result, the only
off-chip memory accesses come from fetching weights. In order to
maximize the energy efficiency of the accelerator, weight-stationary
architecture is adopted where the weight kernels are read exactly
once from the off-chip memory. To leverage the parallelism in the
output channel dimension, the PE rows apply different weight ker-
nels on the same input feature to generate R output channels in
parallel. Thus, the data fetching unit broadcasts the same input
to all window buffers attached to each PE row to exploit feature
reuse. Similar to several other CNN accelerators [16–18], we add a
specialized line buffer between the window buffers and the global
feature buffer to further exploit the data locality and reuse of the
feature maps.

An adder tree accumulates the partial sums from each PE into a
per-PE-row PSUM buffer. Once the entire feature map of an output
channel is obtained, the feature map store unit writes the output
channel back to the global feature buffer. The baseline architecture
can fully utilize all PEs across different layers and achieve near-
optimal throughput with respect to the number of PEs.

Boosting the Performance of CNN Accelerators with Dynamic Fine-Grained Channel Gating MICRO-52, October 12–16, 2019, Columbus, OH, USA

* =

𝐗𝐫
𝐖𝐫

output
channel

𝒌𝒊

Figure 4: Sampled feature convolution.

3.2 Challenges of Accelerating Sparse
Computation in Conditional Paths

Unlike static fine-grained pruning approaches such as deep com-
pression [19, 20], channel gating is more friendly to hardware ac-
celeration as it preserves regular parallelism in the input channel
dimension (cl−1) and the spatial dimension (per kl × kl filter win-
dow). As illustrated in Figure 4, for each output pixel, a CGNet
either entirely skips the conditional path or performs sampled fea-
ture convolution on all the remaining (1 − χ)cl−1 input channels.
Hence the the induced sparsity in CGNet is more structured.

Nonetheless, there exists dynamic behavior across different out-
put channels (cl) during sampled feature convolution, since the
number and the spatial locations of output activations taking the
conditional path are determined at run time. Computing multi-
ple output channels in parallel may require duplicating a feature
map buffer because different spatial locations of the feature can
be accessed concurrently. Instead, we compute output channels
sequentially and explore the parallelism in other dimensions to
avoid the overhead.

Channel gating also complicates the fetching of the feature map
as it changes the access pattern from a fixed stride access to irregular
access to the kl by kl receptive fields within the 2-D feature map
(shown in Figure 2). We exploit a specialized banking scheme to
provide enough memory bandwidth for accessing the feature.

Moreover, the work imbalance in different output channels may
limit the benefits of exploiting the parallelism in the output chan-
nel dimension. At the micro-architecture level, since only a small
fraction of activations in each output channel take the conditional
path, filling and draining the sampled feature convolution pipeline
can result in nontrivial overhead if individual output channels are
processed separately. We mitigate this pipelining overhead by exe-
cuting the conditional path of multiple output channels all together.

3.3 Architectural Support for Sampled Feature
Convolution

We use the baseline architecture for executing the base path of a
channel gating network. To compute sampled feature convolution
in the conditional path, we need to extend the baseline architecture
by introducing the hardwaremodules colored in green in Figure 5(b).
The gate function only requires a simple comparator that compares
the partial sum with a learned threshold to generate the binary
decision of whether the conditional path needs to computed for a
specific output activation. The resulting decisions are saved in a
fixed-length task queue, whose size is determined by the largest
width and height of the output feature maps.

For sampled feature convolutions in the conditional path, we
reuse the array of R × P PEs in the baseline architecture, but only
leverage the parallelisms within one output channel at a time in
order to avoid dealing with unpredictable and unbalanced work
across output channels. For the conditional paths, each PE still
computes a 1-by-1 convolution ofM input channels per clock cycle,
and a k-by-k convolution of the M input channels is mapped to
each PE row. However, instead of exploiting the parallelism across
multiple output channels, the R rows of PEs process different input
channels in parallel. Therefore, the entire PE array computes a
partial sum for one output activation over R ×M input channels.
The result is added to the partial sum saved in the PSUM buffer to
obtain the final output activation.

In the sampled feature convolution, the PE array needs to pro-
cess output activations with an irregular pattern because only a
small fraction of activations use the conditional path. This irregu-
lar processing pattern leads to irregular access patterns for input
feature maps. The irregular feature map accesses imply that the
convolution windows do not necessarily overlap over consecutive
cycles, whichmakes the line buffer less effective. For this reason, the
data fetching unit loads the input feature into the window buffers
directly for the conditional path. In order to load an arbitrary con-
volution window into the PE row with the corresponding weights,
the accelerator includes a crossbar that connects the sparse feature
map input to the PE rows.

The irregular access patterns also pose a challenge in reading
feature maps from on-chip memory. For example, in order to fully
utilize the PE array, the sampled feature convolution requires fetch-
ing k2l words in an arbitrary kl × kl window of the input feature
map per cycle. If the entire feature map is stored in a single on-
chip memory bank, fetching input words for the sampled feature
convolution would consume multiple clock cycles and starve the
convolution engine. To enable single-cycle access to an arbitrary
kl × kl window, we propose a specialized banking scheme in spa-
tial dimensions. Specifically, we partition the feature map in the
fashion that every neighboring activation is stored in a different
bank. As a result, the sparse feature maps (xr) are partitioned into
k2l banks in the spatial dimension. Figure 5(c) shows an example
of the proposed feature map layout, assuming nine banks are used.
A 5 × 5 feature map is partitioned into nine banks in the spatial
(w × h) dimensions to provide enough throughput for reading nine
activations in one cycle. Every neighboring activation is stored into
a different on-chip memory bank so that the nine input words in
any 3 × 3 window can be accessed in parallel. The numbers in the
feature map represent the ID of the memory bank where each acti-
vation is stored. Although the total capacity of the on-chip memory
remains the same as the baseline architecture, the larger number
of memory banks increases the area of the design.

In our prototype implementation, we use on-chip memory blocks
with the width of 64 bits. To allow multiple output channels to
be accessed in parallel, we store activations along the channel
dimension into a single memory word. In addition, because different
PE rows process different input channels in a cycle for the sampled
feature convolution, we also partition the global feature buffer along
the channel dimension to access different chunks of input channels
in parallel.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward Suh

+

……

+

……

PSUM
BUF

WBUF

<<

<

…
…

…
…

SPS
WBUF

TASK QUEUE

LINE BUF

DENS
FBUF

…
…

…
…

TASK
GEN

task (i, j)

DENS
FBUF

SPS
 FBUF

DENS
WBUF

PSUM
BUF

SPS
FBUF

M
U

X

WINDOW
BUF

WINDOW
BUF

RxP ARRAY

PE(1,P)
WX

Y

PE(1,1)
WX

Y

PE(1,1)
WX

Y

PE(R,P)
WX

Y

PE(R,1)
WX

Y

PE(R,1)
WX

Y

WBUF

∆

∆

M
U

X

FMAP
STORE
FMAP
STORE

 (i, j)

Dense-Sparse
Architecture

SpsA SpsB

D
en

se
W

eigh
t

Sp
a

rse

W
eigh

t

D
en

se
W

eigh
t

Sp
a

rse

W
eigh

t

D
en

se
W

eigh
t

Sp
a

rse

W
eigh

t

Sparse
Feature
BUF BSparse

Feature
BUF A

Dense
Feature
BUF BDense

Feature
BUF A

DensA DensB

Dense
Feature
BUF BDense

Feature
BUF A

DensA DensBSpsW DensW

Host
CPU
Host
CPU

DRAMDRAM

SO
C

 B
U

S
SO

C
 B

U
S

D
eco

d
er

Output

Control
Inst.

On-chip Buffers

w

h

(a) Overall architecture (b) Dense-sparse accelerator details (c) Memory layout of the feature
map, assuming nine banks

Figure 5: Channel gating accelerator architecture.

3.4 Design Space Exploration of the
Dense-Sparse Architecture

We explore the design space of the dense-sparse architecture by
parallelizing the output and input channels of the dense convolution
and the input channels of sampled feature convolution differently.
The objective is to maximize the performance as well as data reuse
of the architecture. Letwl , cl , kl , σ be the width of the feature map2,
the filter size, the number of channels of layer l , and the average
fraction of activations taking the conditional path, respectively. The
latency can be formulated as:

Latency =
N∑
l=1

(
χcl−1
M

cl
R
w2
l︸ ︷︷ ︸

Dense Convolution

+
(1 − χ)cl−1

MR
clσw

2
l︸ ︷︷ ︸

Sampled Feature Convolution

) (4)

As discussed in Section 3.2, the overhead of filling and draining
sampled feature convolution pipeline can be significant. Let PD be
the pipeline depth of the sampled feature convolution, the overhead
equals

∑N
l=1

cl
R PD , where

cl
R calculates the number of times that

the pipeline is filled and drained within a layer.
As we only consider the weight-stationary architecture, the num-

ber of memory accesses to the feature map is used to evaluate the
benefit of data reuse at different design points. The number of
memory accesses to the feature map can be characterized as:

Mem =
N∑
l=1

(χcl−1w
2
l−1

cl
R︸ ︷︷ ︸

Dense Convolution

+ (1 − χ)cl−1σw
2
l cl︸ ︷︷ ︸

Sampled Feature Convolution

) (5)

We impose two resource constraints for the design exploration —
themaximum number of multipliers and the total size of the on-chip
buffers. The number of multipliers equals to R ·M · k2. Assuming
that each weight and activation are 8 bits, each partial sum is 16
bits, and the spatial index (i, j) of each task is 8 bits each, the total
size of the on-chip buffers (B) is equal to:

B = max
l ∈{1...N }

2(k2l cl−1R︸ ︷︷ ︸
Weight Buf.

+ w2
l−1cl−1︸ ︷︷ ︸

Feature Buf.

+ w2
l R︸︷︷︸

PSUM Buf.

+ w2
l R︸︷︷︸

Task Queue

) (6)

2We assume the shape of the 2-D feature map is a square where hl = wl .

5.35 5.40 5.45 5.50 5.55
of Memory Accesses 1e7

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

L
a

te
n

cy
(c

yc
le

s)

1e7

Infeasible design

Feasible design

Optimal design

Figure 6: Design space exploration of the CGNet accelerator.

We assume σ = 0.3, ResNet-18 architecture, and ImageNet dataset
for the following exploration. We set the maximum number of
multipliers to 600 and storage size to 18 MB based on the available
resources of the Xilinx Zynq device (xc7z045ffg900-2). A subset of
the design points we explored are depicted in Figure 6. The best
parameter choices are M = 8, P = 9, and R = 8 for both baseline
and dense-sparse architectures. Another stand-alone convolution
engine with M = 8, P = 1, and R = 8 is used to handle the 1 × 1
convolutional layers in the ResNet models.

4 EVALUATION
4.1 Algorithm Evaluation
We evaluate CGNets on the CIFAR-10 [21] and ImageNet (ILSVRC
2012) [22] datasets and demonstrate that channel gating can signif-
icantly reduce the compute with minimal impact on accuracy.

4.1.1 Network Architectures. We apply channel gating on a modi-
fied ResNet-183 and VGG-16 on CIFAR-10. The modified ResNet-18
baseline has 5.40% errors on CIFAR-10 with 578 MFLOPs. For Im-
ageNet, we use AlexNet and ResNet-18 as the baseline networks.
The experiments use a uniform χ and T for all layers in CGNets.

3The ResNet-18 variant architecture is similar to the ResNet-18 architecture on
ImageNet while using 3×3 filter in the first convolutional layer and having ten outputs
from the last fully-connected layer.

Boosting the Performance of CNN Accelerators with Dynamic Fine-Grained Channel Gating MICRO-52, October 12–16, 2019, Columbus, OH, USA

1 2 3 4 5 6 7 8 9

FLOP reduction (×)

T
o

p
-1

 t
e

st
 e

rr
o

r
(%

)

SCP

Res-Shuffle

CGNet

5.0

5.5

6.0

6.5

7.0

7.5

Figure 7: SCP, Res-Shuffle, and CGNet on CIFAR-10.

Table 3: The accuracy and FLOP reduction for CIFAR-10 —
CGNet A and B represent CGNet models with different parameter
values for the target threshold (T), χ , and λ. χ is 1

8 for all CGNet
models. λ is 5e−4 and 1e−4 for ResNet and VGG, respectively.

Network Model Target
Threshold Test Error (%) FLOP

Reduction

ResNet
Baseline / 5.40 1×

Res-Shuffle / 5.53 2×
CGNet-A 2 5.44 5.49×
CGNet-B 3 5.76 6.29×

VGG
Baseline / 7.20 1×
CGNet-A 2 7.12 3.41×
CGNet-B 3 7.59 5.1×

4.1.2 Accuracy and Computational Costs (FLOPs). In Figure 7, we
compare CGNet on ResNet-18 with static channel pruning (SCP)4
and ResNet with grouped convolution and channel shuffling (Res-
Shuffle), which are the main techniques proposed in ShuffleNet [23].
Grouped convolution with shuffling represents the state-of-the-art
static pruning approach. CGNet achieves larger FLOP savings with
better accuracy compared to SCP and Res-Shuffle. Table 3 shows
the trade-off between accuracy and FLOP reduction when CGNet
models are used for CIFAR-10. CGNet can reduce the computation
by 2.7 - 5.5× with almost no accuracy degradation on three state-of-
the-art architectures. CGNet-A reduces FLOPs by 2.7× with 0.1%
higher top-1 accuracy compared to Res-Shuffle on CIFAR-10. Note
that CGNet-A and CGNet-B represent CGNet models with different
the target threshold (T), χ , and λ. While we use the same name in
multiple table entries, they all represent different CGNet models
for each baseline network and dataset.

Table 4(a) and 4(b) compare CGNet to prior arts [5, 9, 24] on
AlexNet and ResNet-18 for ImageNet. The results show that CGNet
outperforms all other pruning techniques, offering better accuracy
and higher FLOP reduction. Table 4(a) shows the comparison with
SnaPEA [9] based on the results on AlexNet. The top-5 errors of
the baseline AlexNet reported for CGNet and SnaPEA are 19.4%
and 27.4%, respectively 5. CGNet achieves a 5.5× speedup with a
22% top-5 error (2.6% accuracy drop) whereas SnaPEA reports a
2.1× speedup with a 30.4% top-5 error (3% accuracy drop).

4Static channel pruning removes a fixed fraction of channels statically and trains
the pruned model from scratch.

5SnaPEA only provides the top-5 error. To compare with SnaPEA, we report the
top-5 error as well. The top-1 errors of CGNet-A and CGNet-B for AlexNet are 57.1%
and 54.8%, respectively.

Figure 8: Samples with different FLOP reductions in CIFAR-
10 — Easy samples refer to images with high FLOP reduction, while
hard samples refer to images with low FLOP reduction.

Table 4: Comparisons of accuracy and FLOP reduction of the
prunedmodels for ImageNet—CGNet A and B represent CGNet
models with different parameter values for the target threshold (T),
χ , and λ. χ is 1

8 for all CGNet models. (T , λ) is (3, 1e−5) and (3, 5e−5)
for CGNet-A and -B on AlexNet, respectively. (T , λ) is (1, 5e−5) and
(1, 7e−5) for CGNet-A and -B on ResNet, respectively.

Model Top-5 Accu.
Drop (%)

FLOP
Reduction

Top-5 Error
Baseline (%)

AlexNet (Caffe [27]) / 1× 19.8
AlexNet-baseline / 1× 19.4

SnaPEA-baseline [9] / 1× 27.4
SnaPEA [9] 3.0 2.11× 30.4
CGNet-A 0.6 2.65× 19.4
CGNet-B 2.6 5.50× 19.4

(a) AlexNet

Model Top-1 Accu.
Drop (%)

FLOP
Reduction

Top-1 Error
Baseline (%)

Network Slimming [5] 1.8 1.39× 31.0
Discrimination
aware Pruning [25] 2.3 1.85× 30.4

Feature Boosting
and Suppression [24] 2.5 1.98× 29.3

Res-Shuffle 2.0 1.93× 30.8
CGNet-A 1.0 2.03× 30.8
CGNet-B 1.5 2.36× 30.8

(b) ResNet-18

Table 4(b) compares CGNet with other pruning techniques using
ResNet-18 for ImageNet. Res-Shuffle outperforms network slim-
ming [5] and discrimination-aware channel pruning [25] on ResNet.
Feature Boosting and Suppression (FBS) [24] is a channel-level dy-
namic pruning approach which achieves higher FLOP saving than
static pruning approaches. Channel gating is much simpler than
FBS, yet achieves 1.6% less accuracy drop and slightly higher FLOP
reduction (CGNet-A). While not shown in the table for brevity, ap-
plying knowledge distillation [26] on CGNet achieves 2.82× FLOP
saving with only 0.2% accuracy loss as discussed in [14].

In Figure 8, we also show the test samples with the max. and
min. FLOP reduction for five categories. There exists more than 30%
difference in FLOP reduction among these samples which demon-
strates that CGNet can prune adaptively for different samples.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward Suh

Table 5: The test error of quantizedCGNets onCIFAR-10 and
ImageNet — CGNet-A models on CIFAR-10 and ImageNet refer to
the CGNet-A in Table 3 and 4(b).

Dataset Model Weight Activation Test Error

CIFAR-10 CGNet-A
float-32 float-32 5.44%
fixed-8 fixed-8 5.69%
fixed-4 fixed-8 5.73%

ImageNet CGNet-A float-32 float-32 31.7%
fixed-8 fixed-8 31.9%

4.1.3 Quantization. To further improve the energy efficiency and
performance of our accelerator, We follow the widely used quantiza-
tion configurationwhich quantizes both the weights and activations
to 8 bits to avoid significant accuracy drop.

For activations, we adopt the PACT quantization scheme which
introduces a layer-wise trainable clipping threshold (α) [28]. PACT
first clips the activations to be in the range of [0,α] and then perform
a linear quantization within that range. The quantized activation
(xq) can be expressed as

xq = ⌊
|x | − |x − α | + α

2
·
2N − 1

α
⌉ ·

α

2N − 1
(7)

where ⌊⌉ means rounding to the nearest integer function and N
is the number of quantiztion bits. PACT also adds an L2 regular-
ization on α which minimizes the range of the quantization and
therefore improving the resolution. For weights, as L2 regular-
ization on weights are adopted to prevent the model from over-
fitting, we directly apply a linear quantization between the range
of [−max |x |,max |x |]. 8-bit quantized channel gating networks for
CIFAR-11 and ImageNet have 0.3% and 0.2% accuracy degradation
compared to their floating-point counterparts, respectively.

4.2 Hardware Evaluation
To evaluate the performance improvement, energy saving, and
hardware overhead of applying channel gating, we implemented a
hardware prototype targeting a TSMC 28nm (0.9V, 25°C, Standard
Threshold Voltage Transistors) standard cell library. The SRAMs
in the design are generated using the ARM SRAM compiler. We
apply channel gating to two ResNet-18 models for CIFAR-10 and
ImageNet. The ResNet models with channel gating achieve 5.5×
and 2.8× FLOP reduction on average over a batch of 64 images
compared to the baseline ResNetmodels on CIFAR-10 and ImageNet,
respectively. In the rest of this section, we refer to the dense-sparse
architecture proposed in Section 3.3 as CGNet-xcel, and compare it
with the baseline architecture described in Section 3.1.

4.2.1 Methodology. Figure 9 shows the flow that we use to im-
plement both the baseline and CGNet accelerators. With the RTL
generated by HLS, we first run through an FPGA synthesis flow
to obtain resource utilization after place and route, which is useful
for identifying key resource overheads. After generating the RTL
simulation trace, the RTL source files are sent to Synopsys Design
Compiler (DC) together with the standard cell library, SRAM in-
formation, and the statistics of signal switching activities6. We can
obtain area and timing estimations, as well as the gate-level netlist

6In the Switching Activity Interchange format (SAIF) format.

RTL simulator

vcd2saif

Synopsys DC
.saif

Standard Cell Library +
ARM SRAM compiler

Synopsys PT

.db

netlist
DRAMsim2
/ CasHMC

latency area, timing power

Cycle-accurate
performance

model

.vcd

HLS-generated RTL
CGNet.v, ResNet_tb.v, …

Figure 9: The RTL design and simulation flow.

3x3 comp.
wgt_buf0

1x1 comp.
wgt_buf0

LD wgt_buf1

3x3 comp.
wgt_buf1

1x1 comp.
wgt_buf1

…
3x3 comp.
wgt_buf0

LD wgt_buf1

3x3 comp.
wgt_buf1

3x3 comp.
wgt_buf1

LD wgt_buf0

…
LD wgt_buf0 LD wgt_buf0LD wgt_buf0

First call of a residual block Second call of a residual block
(1x1 layer present in some blocks)

Load weights
of!" output

channels

Compute !"
output channels

Figure 10: Timing diagram of a residual block — Compute and
weight loading form a coarse-grained pipeline.

from Synopsys DC. The gate-level netlist and the RTL signal trace
are used by Synopsys PrimeTime (PT) for power analysis.

For performance estimates, we use a combination of RTL sim-
ulations for the accelerator and DRAMSim2 [29] for off-chip ac-
cesses. In this performance model, we first extract the memory
trace and the compute time of an accelerator from a cycle-accurate
RTL simulation, use DRAMSim2 [29] for DRAM latency estimates
for memory accesses, and combine the results to obtain the overall
execution time. We simulate two 64-bit DDR3 channels at 666MHz,
where each channel contains one rank of eight banks. The total
capacity of the simulated DRAM is 8GB. The DRAM parameters
are verified against Verilog timing models from Micron [29].

Figure 10 shows a timing diagram of computing one residual
block in ResNet, which applies to both the baseline and CGNet-xcel.
The accelerator is called twice for each residual block. In order
to save on-chip storage, the accelerator only loads the weights
of Nw output channels in each step as shown in the figure. As
the input channels to a conditional path may still be used for a
subset of output activations, the accelerator reads the same amount
of weights from off-chip memory as the baseline. CGNet can be
extended to reduce memory accesses by pruning entire output
channels. We apply double buffering to both baseline and CGNet-
xcel so that computation and loading weights can be performed in
parallel, as commonly done in CNN accelerators [15]. Note that the
3x3 and 1x1 convolutional layers in the same residual block of the
ResNet-18 model are also computed in parallel.

4.2.2 Performance. Figure 11 compares the performance of the
baseline, CGNet-xcel, and the theoretical execution time on CIFAR-
10 and ImageNet. We use Nw = 64 for both the baseline and CGNet-
xcel. The baseline and CGNet-xcel results are averaged over a batch
of 64 images. To obtain the theoretical execution time of CGNet
(CGNet-theoretical), we calculate the number of multiplications

Boosting the Performance of CNN Accelerators with Dynamic Fine-Grained Channel Gating MICRO-52, October 12–16, 2019, Columbus, OH, USA

0

1

2

3

4

5

CIFAR ImageNet

Ex
ec

ut
io

n
Ti

m
e

(m
s) Baseline CGNet-xcel CGNet-theoretical

Figure 11: Comparison of baseline, CGNet-xcel, and theoret-
ical performance on CIFAR-10 and ImageNet.

0

0.05

0.1

0.15

0.2

0.25

res_blk0 res_blk1 res_blk2 res_blk3 res_blk4 res_blk5 res_blk6 res_blk7

Ex
ec

ut
io

n
Ti

m
e

(m
s) Baseline CGNet-xcel CGNet-theoretical

(a) CIFAR-10

0

0.2

0.4

0.6

0.8

res_blk0 res_blk1 res_blk2 res_blk3 res_blk4 res_blk5 res_blk6 res_blk7

Ex
ec

ut
io

n
Ti

m
e

(m
s) Baseline CGNet-xcel CGNet-theoretical

(b) ImageNet
Figure 12: Execution time for each residual block.

0

0.05

0.1

0.15

0.2

0.25

res_blk0 res_blk1 res_blk2 res_blk3 res_blk4 res_blk5 res_blk6 res_blk7

Ex
ec

ut
io

n
Ti

m
e

(m
s) CGNet-xcel-mem CGNet-xcel-compute

(a) CIFAR-10

0

0.1

0.2

0.3

0.4

res_blk0 res_blk1 res_blk2 res_blk3 res_blk4 res_blk5 res_blk6 res_blk7

Ex
ec

ut
io

n
Ti

m
e

(m
s) CGNet-xcel-mem CGNet-xcel-compute

(b) ImageNet
Figure 13: Compute andmemory time of each residual block
on the two datasets.

for each input image, and divide it by the number of multipliers in
CGNet-xcel. In other words, the theoretical execution time assumes
no memory overhead and 100% PE utilization.

As shown in Figure 11, CGNet-xcel has significant performance
improvements over the baseline for both CIFAR-10 and ImageNet.
Moreover, the performance of CGNet-xcel for ImageNet is close
to the theoretical optimal, which indicates that our CGNet-xcel
architecture is quite effective in leveraging the sparsity created by
channel gating. On the other hand, for CIFAR-10, there is a notice-
able performance gap between CGNet-xcel and CGNet-theoretical.
Figure 12 shows more details by breaking down the execution time
for each residual block. CGNet-xcel achieves near-optimal perfor-
mance for all residual blocks on ImageNet. For CIFAR-10, while

Table 6: FPGA resource utilization of the baseline and
CGNet-xcel.

Baseline CGNet-xcel

LUT FF DSP BRAM LUT FF DSP BRAM

Total 34163 20295 783 780 65390 46998 798 933

Overhead – – – – 1.9× 2.3× 1.0× 1.2×

Table 7: ASIC area comparison between the baseline and
CGNet-xcel.

Baseline CGNet-xcel

Capacity
(KB) # Banks Area

(mm2)
Capacity
(KB) # Banks Area

(mm2)

SRAM

Weight Dense 576.0 72 1.268 72.0 72 0.698

Sparse – – 0 504.0 63 1.109

Total 576.0 72 1.268 576.0 135 1.807

Feature Dense 588.0 48 2.072 73.5 12 0.261

Sparse – – 0 533.0 189 2.572

Total 588.0 48 2.072 606.5 201 2.833

Combinational
Area (mm2) 0.040 0.111

Noncombinational
Area (mm2) 0.039 0.111

Total Area (mm2) 4.557 5.574

Overhead – 1.22×

CGNet-xcel achieves close-to-optimal performance for residual
blocks 0-3, the performance gap between CGNet-xcel and CGNet-
theoretical gets wider for the later residual blocks. In fact, for the
last two residual blocks, CGNet-xcel only provides marginal per-
formance improvements.

To further understand the source of the performance gap be-
tween CGNet-xcel and the theoretical limit, we breakdown the
execution time of each residual block into compute time and mem-
ory access time in Figure 13. As shown in the figure, while the first
four residual blocks are compute-bound for CIFAR-10, the rest are
memory-bound, especially the last two residual blocks. This ex-
plains why CGNet-xcel cannot improve performance for res_blk6
and res_blk7 in Figure 12(a). Channel gating can significantly re-
duce the amount of computation during inference, but does not
reduce memory accesses for the weights. The later residual blocks
in ResNet-18 have more weights, and become memory-bound. The
CGNet model for ImageNet requires a lot more computation com-
pared to the one for CIFAR-10 because of the larger feature map
sizes and the lower FLOP reduction ratio for channel gating. As a
result, only the last two residual blocks are sightly memory-bound.

4.2.3 Area. To understand the area overhead of the proposed
CGNet architecture compared to the baseline, we first show the
FPGA resource usage in Table 6. The results are from post-place-and-
route reports, targeting a Xilinx Zynq device (xc7z045ffg900-2)
with a clock period of 10ns. As shown in the table, the extensions
necessary for CGNet-xcel result in a 20% higher BRAM usage due
to more complex memory banking. CGNet-xcel also increases the
LUT and Flip-Flop usage because of extra multiplexing and deeper
pipelines. On the other hand, the overhead for DSPs is small (2%)
because CGNet-xcel has the same number of PEs with the baseline.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward Suh

Table 8: Power, performance, and energy comparison of dif-
ferent platforms for ImageNet — The reported CPU power is
the thermal design power.

Platform ASIC Intel
i7-7700k

Nvidia GTX
1080TiBaseline CGNet-xcel

Frequency (MHz) 800 800 4200 1923

Power (Watt) 0.202 0.256 91 225

Throughput (fps) 253.8 580.6 13.8 1563.7

Energy/Img (mJ) 0.796 0.441 6594.2 143.9

Table 9: The ASIC results for CGNet-NM.
Dataset Total Area Freq. Power Throughput Energy/Img

CIFAR-10 3.859mm2 500MHz 0.159W 1004.4fps 0.158mJ

ImageNet 0.160W 200.9fps 0.796mJ

The DSP overhead comes from the additional index calculations for
the sparse computation.

Table 7 shows the ASIC area comparison between the baseline
and CGNet-xcel. Compared to the baseline, the ASIC implemen-
tation of CGNet-xcel noticeably increases the area of both combi-
national and non-combinational logic. However, because the total
area is dominated by SRAMs for both the baseline and CGNet-xcel,
CGNet-xcel only has 1.22× overhead in the total area. The table
also provides the capacity, the number of banks, and the area of
the SRAMs used to implement the weight and feature map buffers.
While the total SRAM capacity of CGNet-xcel is not significantly
higher than the baseline, 0.761mm2 more SRAM area is consumed
because of the more complex memory banking scheme. The bank-
ing scheme also requires more and wider multiplexers, causes an
increase in the pipeline depth, and results in higher area consump-
tion in both combinational and non-combinational logic.

4.2.4 Comparison with Other Compute Platforms. Table 8 shows
the power, throughput, and energy comparisons among different
platforms. Here we compare CGNet-xcel with the baseline, as well
as a CPU and a GPU. The CPU and the GPU perform regular ResNet-
18 inference with a batch size of 32. As shown in the table, the
baseline and CGNet-xcel outperform the CPU by 18.4× and 42.1×
in terms of throughput. They are also four orders of magnitudemore
energy efficient than the CPU. Comparedwith the GPU, the baseline
and CGNet accelerators are 180.1× and 326.3×more energy efficient,
respectively. Compared with the baseline, the CGNet architecture
did not have any noticeable impact on clock frequency. While the
power consumption and the area of CGNet-xcel is higher than the
baseline, its throughput is 2.3× higher. As a result, CGNet-xcel is
1.8× more energy efficient compared to the baseline.

4.2.5 High-Bandwidth, Compute-Constrained Platform. As shown
in Section 4.2.2, CGNet-xcel can efficiently exploit the reduced
computation from channel gating to significantly improve the per-
formance of CNN inference. Our results also show that the per-
formance improvements of CGNet-xcel can be limited when CNN
performance is constrained by memory bandwidth. For example,
the last few layers of ResNet-18 with channel gating are memory-
bound for CIFAR-10. In that sense, CGNet-xcel will be particularly

0

0.05

0.1

0.15

0.2

blk0 blk1 blk2 blk3 blk4 blk5 blk6 blk7

Ex
ec

ut
io

n
Ti

m
e

(m
s) CGNet-NM CGNet-NM-theoretical

(a) Execution time breakdown

0

0.05

0.1

0.15

0.2

blk0 blk1 blk2 blk3 blk4 blk5 blk6 blk7

Ex
ec

ut
io

n
Ti

m
e

(m
s) CGNet-NM-mem CGNet-NM-compute

(b) Compute and memory time of each residual block
Figure 14: CGNet-NM results on CIFAR-10.

1 2 3 4 5 6
1

2

3

4

5

FLOP reduction (×)

S
p
e

e
d
u

p
 (

×
)

CGNet-xcel
CGNet-PIM

Figure 15: Performance scaling on CIFAR-10.

attractive for platforms with high memory bandwidth but limited
compute resources, such as near-memory/in-memory computing
platforms. For example, Hybrid Memory Cube (HMC) exploits the
3D stacking technology so that computation can be performed on
a logic die which is placed under a stack of DRAM dies [30]. With
more DRAM banks than traditional DRAMs, HMC provides very
high internal memory bandwidth, which can be used by the com-
putational resources on the logic die through Through-Silicon Vias
(TSVs). However, a large portion of the logic die is occupied by
DRAM peripherals such as the serial links, vault controllers, and
interconnect for the TSVs. A previous study [31] estimates that the
peripherals occupy 93mm2 out of the 99mm2 total area of the logic
die in an HMC. In addition, the limited power budget constrains
the frequency of the computational resources on the logic die.

Here, we study the applicability of CGNet across multiple plat-
forms by evaluating a design for a near-memory (NM) computing
scenario where the accelerator is placed on the logic die of an HMC.
We conservatively set the target frequency to 500MHz and the area
budget to 4mm2. We use CasHMC [32], a cycle-level HMC simula-
tor, to estimate the memory latency in this case. We simulate a 4GB
HMC device with 1.25GHz frequency, 32 vaults and eight banks per
vault using the configuration file provided by CasHMC. We assume
that the accelerator communicates with the DRAM stack through
four half-width (8-lane) serial links on the logic die.

To meet the area constraint, we designed a variant of CGNet-xcel
with Nw = 8 and the pipeline Initiation Interval (II) of 2, cutting
the number of multipliers by half. We refer to this configuration as

Boosting the Performance of CNN Accelerators with Dynamic Fine-Grained Channel Gating MICRO-52, October 12–16, 2019, Columbus, OH, USA

CGNet-NM. The ASIC results of CGNet-NM are shown in Table 9.
Compared to the results for the “normal” CGNet-xcel, the CGNet-
NM accelerator has smaller area and lower power consumption.
Figure 14 shows the performance of CGNet-NMonCIFAR-10, where
the execution time breakdown is shown in Figure 14(a) and the
breakdown of compute and memory time is shown in Figure 14(b).
With a higher memory bandwidth, lower frequency, and fewer
compute resources, only the last two residual blocks are slightly
memory-bound, and the performance of CGNet-NM is close to the
theoretical optimal. The results show that CGNet can be designed
to meet varying area/power constraints and applied to speed up
CNNs in multiple types of platforms.

4.2.6 Performance-Accuracy Trade-off. Our experiments also show
that CGNet can be scaled to a range of performance-accuracy trade-
off points, especially with high memory bandwidth. The FLOP
reduction ratio of channel gating can be tuned during training. For
more FLOP reduction, channel gating prunes away more computa-
tion at the cost of accuracy. Figure 15 shows how the performance
of the normal CGNet-xcel and CGNet-NM scales with the FLOP
reduction ratio for CIFAR-10. With high memory bandwidth, the
performance of CGNet-NM scales almost linearly as more computa-
tion is pruned. On the other hand, the performance improvements
for CGNet-xcel saturate earlier due to the memory bandwidth limit.
We note that the CGNet-xcel performance scales much better for
more compute-bound networks such as ResNet-18 on ImageNet,
and CGNet-xcel can significantly improve CNN performance on
traditional platforms as well.

5 RELATEDWORK
Many recent proposals suggest to statically prune unimportant
filters/features [4–6]. These static pruning techniques identify inef-
fective channels in filters/features by examining the magnitude of
the weights/activation in each channel, and prune the ineffective
subset of the channels from the model. The pruned model is then re-
trained to mitigate the accuracy loss from pruning. By pruning and
retraining iteratively, these methods can compress the model size
and reduce the computation cost. However, they reduce the same
amount of computation for all inputs as they cannot exploit dy-
namic input-specific sparsity. In contrast, channel gating achieves a
better performance-accuracy trade-off by identifying unimportant
regions for a particular input and reducing computation for those
regions at run time. We also believe that channel gating is comple-
mentary to static pruning approaches as it exploits input-dependent
sparsity in the features.

SACT [33] introduces the spatially adaptive computation time
technique on Residual Network [34], which can adjust the number
of residual units for different regions of the input features. Lin et al.
propose to use reinforcement learning to train a recurrent neural
network making run-time decisions to prune output channels [35].
Both approaches require additional weights and extra computation
to make the run-time decisions. In comparison, channel gating
generates more fine-grained pruning decisions without incurring
overhead in weights or computation.

Cnvlutin and Minerva [7, 8] propose to dynamically prune zero-
valued pixels from the ReLU activation or pixels with small magni-
tude in the input features during inference.While such zero-pruning

methods require no training effort, they strictly rely on the sparsity
in the output features of each layer and only apply to ReLU-based
activations. SnaPEA [9] extends the idea and propose to predict the
ReLU zeros using the partial sum from a subset of input channels.
While the use of the partial sum in a pruning decision is similar to
our approach, channel gating enables a more general and aggres-
sive pruning scheme by identifying unimportant regions in input
features rather than only targeting zeros from one specific (ReLU)
activation function. More importantly, channel gating introduces a
training method to learn the gating policy (thresholds and weights),
which turns out to be critical for achieving a small accuracy degra-
dation. Similar to other inference-time approaches, SnaPEA often
results in significant accuracy losses when targeting more than 2×
FLOP reduction.

Predictive-based execution proposed in [36, 37] predicts zeros by
first executing the significant bits. However, less information is pre-
sented in significant bits if batch normalization is used. Moreover,
the performance gain of these methods is limited by the sparsity
of zeros in the baseline networks. In contrast, channel gating can
exploit various degrees of sparsity by choosing different target
thresholds. Bit Fusion [38] proposes to reduce the computational
cost by choosing different bit widths dynamically which is also ap-
plicable to CGNet. CirCNN and PermDNN [39, 40] use structured
weight matrices with Fourier transform or permutation to achieve
hardware-friendly structured sparsity. This line of research also
focuses on static sparsity, although they are potentially comple-
mentary to our approach for reducing the size of the weights in
CGNet.

6 CONCLUSION
This paper introduces a new fine-grained dynamic pruning tech-
nique for CNN, named channel gating, which reduce computational
costs for CNN inference, along with a hardware accelerator archi-
tecture that can efficiently realize the dynamic pruning. The ex-
perimental results show that the channel gating can significantly
reduce FLOPs with minimal accuracy loss: 5.5× FLOP reduction
without accuracy loss for CIFAR-10, and 2× FLOP reduction with
1.0% accuracy degradation for ImageNet using ResNet-18. The paper
also proposes a unified dense-sparse accelerator where both dense
and sparse computations can be mapped onto the same processing
elements, and shows that the proposed architecture can achieve
close-to-optimal performance improvements for channel gating.
Overall, by co-optimizing CNN algorithms and hardware architec-
ture, the CGNet architecture provides higher performance gains
with lower accuracy degradation compared to the state-of-the-art
pruning techniques.

7 ACKNOWLEDGMENTS
This work was partially sponsored by Semiconductor Research
Corporation and DARPA, NSF Awards #1453378 and #1618275, a
research gift from Xilinx, Inc., and a GPU donation from NVIDIA
Corporation. The authors would like thank the Batten Research
Group, especially Christopher Torng (Cornell Univ.) for sharing
their Modular VLSI Build System. The author also thank Zhaoliang
Zhang and Kaifeng Xu (Tsinghua Univ.) for the C++ implementation
of channel gating and Ritchie Zhao and Oscar Castañeda (Cornell
Univ.) for insightful discussions.

MICRO-52, October 12–16, 2019, Columbus, OH, USA Weizhe Hua, Yuan Zhou, Christopher De Sa, Zhiru Zhang, and G. Edward Suh

REFERENCES
[1] A. Canziani, A. Paszke, and E. Culurciello. An Analysis of Deep Neural Network

Models for Practical Applications. arXiv preprint arXiv:1605.07678, 2016.
[2] Z. Lu, S. Rallapalli, K. S. Chan, and T. F. La Porta. Modeling the Resource Require-

ments of Convolutional Neural Networks on Mobile Devices. In Int’l Conf. on
Multimedia (MM), Oct 2017.

[3] S. Han, H. Mao, and W. J. Dally. Deep Compression: Compressing Deep Neural
Network with Pruning, Trained Quantization and Huffman Coding. In Int’l Conf.
on Learning Representations (ICLR), May 2016.

[4] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning Filters for
Efficient ConvNets. In Int’l Conf. on Learning Representations (ICLR), May 2017.

[5] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning Efficient Convo-
lutional Networks through Network Slimming. In Int’l Conf. on Computer Vision
(ICCV), Oct 2017.

[6] Y. He, X. Zhang, and J. Sun. Channel Pruning for Accelerating Very Deep Neural
Networks. In Int’l Conf. on Computer Vision (ICCV), Oct 2017.

[7] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos.
Cnvlutin: Ineffectual-neuron-free Deep Neural Network Computing. In Int’l
Symp. on Computer Architecture (ISCA), Jun 2016.

[8] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. HernÃąndez-
Lobato, G. Y.Wei, and D. Brooks. Minerva: Enabling Low-Power, Highly-Accurate
Deep Neural Network Accelerators. In Int’l Symp. on Computer Architecture
(ISCA), Jun 2016.

[9] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Esmaeilzadeh.
SnaPEA: Predictive Early Activation for Reducing Computation in Deep Convo-
lutional Neural Networks. In Int’l Symp. on Computer Architecture (ISCA), Jun
2018.

[10] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model
size. arXiv preprint arXiv:1602.07360, 2016.

[11] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In Int’l Conf. on Machine Learning
(ICML), Jul 2015.

[12] V. Nair and G. E. Hinton. Rectified Linear Units Improve Restricted Boltzmann
Machines. In Int’l Conf. on Machine Learning (ICML), Jun 2010.

[13] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang. MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems. arXiv preprint arXiv: 1512.01274, 2015.

[14] W. Hua, C. De Sa, Z. Zhang, and G. E. Suh. Channel Gating Neural Networks.
arXiv preprint arXiv: 1805.12549, 2018.

[15] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing FPGA-based
Accelerator Design for Deep Convolutional Neural Networks. In Int’l Symp. on
Field-Programmable Gate Arrays (FPGA), Feb 2015.

[16] J. Qiu et al. Going deeper with embedded fpga platform for convolutional neural
network. In Int’l Symp. on Field-Programmable Gate Arrays (FPGA), Feb 2016.

[17] J. Zhang and J. Li. Improving the Performance of OpenCL-based FPGA Acceler-
ator for Convolutional Neural Network. In Int’l Symp. on Field-Programmable
Gate Arrays (FPGA), Feb 2017.

[18] R. Zhao, W. Song, W. Zhang, T. Xing, J. Lin, M. Srivastava, R. Gupta, and
Z. Zhang. Accelerating binarized convolutional neural networks with software-
programmable fpgas. In Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
Feb 2017.

[19] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. EIE:
Efficient Inference Engine on Compressed Deep Neural Network. In Int’l Symp.
on Computer Architecture (ISCA), Jun 2016.

[20] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer,
S. W. Keckler, and W. J. Dally. SCNN: An Accelerator for Compressed-sparse
Convolutional Neural Networks. In Int’l Symp. on Computer Architecture (ISCA),
Jun 2017.

[21] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical
report, 2009.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and F. Li. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV), 2015.

[23] X. Zhang, X. Zhou, M. Lin, and J. Sun. ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile Devices. In Conf. on Computer Vision
and Pattern Recognition (CVPR), Jun 2018.

[24] X. Gao, Y. Zhao, L. Dudziak, R. Mullins, and C.-z. Xu. Dynamic Channel Pruning:
Feature Boosting and Suppression. In Int’l Conf. on Learning Representations
(ICLR), May 2019.

[25] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu.
Discrimination-aware Channel Pruning for Deep Neural Networks. In Conf. on
Neural Information Processing Systems (NeurIPS), Dec 2018.

[26] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015.

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional Architecture for Fast Feature Embedding.

arXiv preprint arXiv:1408.5093, 2014.
[28] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srinivasan, and K. Gopalakr-

ishnan. PACT: Parameterized ClippingActivation for Quantized Neural Networks.
arXiv preprint arXiv:1805.06085, 2018.

[29] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate
Memory System Simulator. IEEE Computer Architecture Letters, 2011.

[30] Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification 2.1.
http://hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Speci-
fication_Rev2.1_20151105.pdf, 2014.

[31] E. Azarkhish, D. Rossi, I. Loi, and L. Benini. Neurostream: Scalable and Energy
Efficient Deep Learning with Smart Memory Cubes. IEEE Transactions on Parallel
and Distributed Systems, 2018.

[32] D. Jeon and K. Chung. CasHMC: A Cycle-Accurate Simulator for Hybrid Memory
Cube. IEEE Computer Architecture Letters, 2017.

[33] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. P. Vetrov, and
R. Salakhutdinov. Spatially Adaptive Computation Time for Residual Networks.
In Conf. on Computer Vision and Pattern Recognition (CVPR), Jul 2017.

[34] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
In Conf. on Computer Vision and Pattern Recognition (CVPR), Jun/Jul 2016.

[35] J. Lin, Y. Rao, J. Lu, and J. Zhou. Runtime Neural Pruning. In Conf. on Neural
Information Processing Systems (NeurIPS), Dec 2017.

[36] Y. Lin, C. Sakr, Y. Kim, and N. Shanbhag. PredictiveNet: An Energy-Efficient
Convolutional Neural Network via Zero Prediction. In Int’l Symp. on Circuits and
Systems (ISCAS), May 2017.

[37] M. Song, J. Zhao, Y. Hu, J. Zhang, and T. Li. Prediction Based Execution on Deep
Neural Networks. In Int’l Symp. on Computer Architecture (ISCA), Jun 2018.

[38] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh. Bit
Fusion: Bit-level Dynamically Composable Architecture for Accelerating Deep
Neural Networks. In Int’l Symp. on Computer Architecture (ISCA), Jun 2018.

[39] C. Ding et al. CirCNN: Accelerating and Compressing Deep Neural Networks Us-
ing Block-circulant Weight Matrices. In Int’l Symp. on Microarchitecture (MICRO),
Oct 2017.

[40] C. Deng, S. Liao, Y. Xie, K. K. Parhi, X. Qian, and B. Yuan. PermDNN: Efficient
Compressed DNN Architecture with Permuted Diagonal Matrices. In Int’l Symp.
on Microarchitecture (MICRO), Oct 2018.

	Abstract
	1 Introduction
	2 CNNs with Channel Gating
	2.1 CGNet Block
	2.2 Gate Function
	2.3 Training CGNet

	3 CGNet Accelerator Architecture
	3.1 Architecture Overview
	3.2 Challenges of Accelerating Sparse Computation in Conditional Paths
	3.3 Architectural Support for Sampled Feature Convolution
	3.4 Design Space Exploration of the Dense-Sparse Architecture

	4 Evaluation
	4.1 Algorithm Evaluation
	4.2 Hardware Evaluation

	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

